Электрическое сопротивление лампы накаливания при переменном токе
Удельное электрическое сопротивление — формула, обозначение и физический смысл
При проектировании электронных устройств применяются различные соотношения, позволяющие рассчитать некоторые параметры электрической цепи. Один из них зависит от температуры и называется удельным электрическим сопротивлением, формула которого включает все компоненты, влияющие на искомую величину. Их необходимо разобрать подробно, поскольку это влияет на работоспособность радиокомпонентов, входящих в состав аппаратуры.
Что такое сопротивление
Ток, протекая через провода и различные радиодетали, тратит свою энергию. Это явление количественно выражается величиной сопротивления. В электротехнике его разделяют на активное и реактивное сопротивление. В первом случае при прохождении тока часть его энергии превращается в тепловой вид, а иногда и в другие (например, проявляется в химических реакциях). Величина активного сопротивления зависит от частоты переменного электротока и возрастает с ее увеличением.
Второй тип сопротивления имеет более сложную природу и возникает в момент включения или выключения потребителя электроэнергии в сеть переменного или постоянного тока. В цепи с реактивным сопротивлением энергия электрического тока частично превращается в другую форму, а затем переходит обратно, то есть, наблюдается периодический колебательный процесс. Полное сопротивление цепи включает в себя активный и реактивный типы, которые учитываются по особым правилам.
Последовательное и параллельное соединение резисторов
Все вышеописанные резисторы можно соединять параллельно или последовательно. При параллельном соединении выводы резисторов соединятся в общих точках.
В этом случае, чтобы узнать общее сопротивление всех резисторов в цепи, достаточно будет воспользоваться формулой, где сопротивление между точками А и В (RAB) и есть то самое R общее:
При последовательном соединении номиналы резисторов просто тупо суммируются
Хорошее видео по теме
Похожие статьи по теме «резисторы»
Проводники и резисторы
Вещества, в которых может течь электричество, называются проводниками . Кусок проводящего материала с определенным сопротивлением, предназначенный для использования в цепи, называется резистором . Проводники изготавливаются из материалов с высокой проводимостью, таких как металлы, в частности, медь и алюминий. С другой стороны, резисторы изготавливаются из самых разных материалов в зависимости от таких факторов, как желаемое сопротивление, количество энергии, которое необходимо рассеять, точность и стоимость.
Электрическое сопротивление проводников
Сопротивление проводника зависит:
— от длины проводника – с увеличением длины проводника его электрическое сопротивление возрастает;
— от площади поперечного сечения проводника – с уменьшением площади поперечного сечения сопротивление увеличивается;
— от температуры проводника – с увеличением температуры сопротивление увеличивается;
— от коэффициента удельного сопротивления материала проводника.
Чем больше сопротивление проводника прохождению электрического тока, тем больше энергии теряют свободные электроны, и тем сильнее нагревается проводник (которым обычно является электрический провод).
Для каждой площади сечения провода существует допустимая величина тока. Если сила тока окажется больше этой величины, то провода могут нагреться до высокой температуры, что, в свою очередь, может вызвать воспламенение изоляционного покрытия.
Максимальные допустимые значения силы тока для различных сечений медных изолированных сварочных проводов приведены ниже в таблице:
Поперечное сечение провода, мм 2 | 16 | 25 | 35 | 50 | 70 |
Предельно допустимый ток, А | 90 | 125 | 150 | 190 | 240 |
Запомните! Величина тока в амперах (I), приходящаяся на один квадратный миллиметр площади поперечного сечения провода (S), называется плотностью тока (j):
j (А/мм 2 ) = I (А) / S (мм 2 )
Коэффициент полезного действия
В результате применения электрического тока для работы ламп с нитью накаливания образуется не только тепловая энергия и видимый для человеческих органов зрения свет, но и инфракрасный свет, который не видят глаза. При температуре вольфрамовой нити в 3350 К коэффициент полезного действия лампочки составляет 15%. Если взять обычное изделие в 60 Вт при температуре 2800 К, то такое устройство будет выдавать минимальный КПД — 5%.
Чем сильнее разогрет проводник, тем выше будет коэффициент полезного действия. Но при большом нагреве вольфрамовой нити заметно снижается срок эксплуатации. Например, если температура лампы составляет 2800 К, то она будет работать около 1000 часов, а если 3400 К, то в несколько раз меньше. Можно увеличить напряжение на 20%, чтобы повысить выделение световой энергии в 2 раза. Но это будет не очень рационально, так как срок эксплуатации уменьшится на 95%.
Как производится расчет электрических цепей
Путь вычисления делится на множество способов, которые используются на практике:
- метод, основанный на законе Ома и правилах Кирхгофа;
- способ определения контурных токов;
- прием эквивалентных преобразований;
- методика измерений сопротивлений защитных проводников;
- расчет узловых потенциалов;
- метод идентичного генератора, и другие.
Основа расчета простой электрической цепи по закону Ома – это определение силы тока в отдельном участке при известном сопротивлении проводников и заданном напряжении.
По условию задачи известны сопротивления подсоединенных к цепи резисторов R1, R2, R3, R4, R5, R6 (без учета сопротивления амперметра). Необходимо вычислить силу токов J1, J2…J6.
На схеме есть три последовательных участка. Причем второй и третий имеют разветвления. Сопротивления этих участков обозначим, как R1, R’, R”. Тогда общее сопротивление равно сумме сопротивлений:
R = R1 + R’ + R”, где
R’ – общее сопротивление параллельно подключенных резисторов R2, R3, R4.
R” – общее сопротивление резисторов R5 и R6.
Используя закон параллельного соединения, вычисляем сопротивления R’ и R”.
Определить силу тока в неразветвленной цепи, зная общее сопротивление при заданном напряжении, можно по следующей формуле:
Для вычисления силы тока в отдельно взятых ветвях, нужно определить напряжение на участках последовательных цепей по закону Ома:
U1 = IR1; U2 = IR’; U3 = IR”;
Зная напряжение конкретных участков, можно вычислить силу тока на отдельных ветвях:
I2 = U2/R2; I3 = U2/R3; I4 = U2/R4; I5 = U3/R5; I6 = U3/R6
Иногда необходимо узнать сопротивление участков по известным параметрам напряжения, силы токов, сопротивления других участков или сделать расчет напряжения по имеющимся данным сопротивления и силе тока.
Основная часть методик направлена на упрощение расчетов. Это достигается адаптацией систем уравнений, либо самой схемы. Расчет электрических цепей производится различными способами, в зависимости от класса их сложности.