Spkb-optics.ru

СПКБ Оптик
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Открытие световых действий электрического тока 1

История открытия электричества: появление и развитие

Открытие электричества полностью изменило жизнь человека. Это физическое явление постоянно участвует в повседневной жизни. Освещение дома и улицы, работа всевозможных приборов, наше быстрое передвижение — все это было бы невозможно без электроэнергии. Это стало доступно благодаря многочисленным исследованиям и опытам. Рассмотрим главные этапы истории электрической энергии.

История открытия электрического тока.

Первооткрывателем электричества принято считать древнегреческого, философа и ученого Фалеса Милетского, жившего в седьмом веке до нашей эры. Он обратил внимание на то, что если шерстью потереть янтарь, тот обретает способность притягивать легкие мелкие предметы. Позже, еще несколько человек пытались изучать природу электричества. Аристотель в VI веке до н. э. заметил, что некоторые виды угрей способны поражать врага при помощи электрических разрядов.

Электрический угорь

Но эти робкие попытки объяснить природу непонятного явления не приносили успеха. И лишь в VII в, англичанин по национальности, Уильям Гильберт, издает труд, в нем он описывает свойства некоторых природных тел притягивать легкие предметы после их натирания. Открытие электрического тока.

Затем, в 1663 году Отто фон Герике сконструировал подобие динамо-машины, она предоставляла возможность увидеть как натертые тела не только притягиваются, но и отталкиваются друг от друга.

Томас Браун использовал слово «электричество» в 1646 году

В 1600 году английский физик Уильям Гилберт написал книгу под названием De Magnete, в которой он объяснил, как статическое электричество генерируется трением янтаря. Однако он не понимал, что электрический заряд универсален для всех материалов.

Поскольку Гилберт изучал статическое электричество с помощью янтаря, а янтарь по-гречески называют «Электрум», он решил назвать его действие электрической силой. Он также изобрел электроскоп (известный как «versorium» Гилберта) для обнаружения присутствия электрического заряда на теле.

Работа Гилберта дала начало английскому слову «electricity», которое впервые появилось во втором выпуске научного журнала Pseudodoxia Epidemica , написанного сэром Томасом Брауном в 1946 году.

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Конспект урока «Действия электрического тока. Направление электрического тока»

На прошлых уроках мы с вами говорили о том, что электрический ток представляет собой упорядоченное движение свободных носителей зарядов.

Как вы знаете, увидеть эти заряды невозможно, так как они очень малы. Но существуют явления, которые убеждают нас в их реальности. Всё дело в том, что прохождение электрических зарядов в среде сопровождается несколькими очень важными физическими явлениями, которые с большой пользой применяются в практической жизни. Такие явления принято называть действиями электрического тока. К числу самых очевидных принадлежат: тепловое, химическое и магнитное действия тока.

Рассмотрим каждое из них более подробно. И начнём с теплового действия тока. Оно проявляется в том, что среда, в которой протекает ток, нагревается. Именно это действие человек давно и успешно использует в электрических утюгах, электрочайниках и кофеварках, в обычных электролампах с металлической спиралью.

Поднесите руку к горящей электрической лампе, и вы сразу почувствуете около неё тепло, то есть нагретая электрическим током лампа излучает энергию.

А почему вообще светится электрическая лампа?

Дело в том, что тонкая вольфрамовая проволочка внутри лампы, которую хорошо видно через прозрачное стекло, нагревается при прохождении по ней электрического тока, раскаляется и начинает светиться.

Можно проделать простой опыт, демонстрирующий подобное тепловое действие тока. Присоединим к полюсам источника тока тонкую проволоку, лучше железную или никелиновую. Замкнув ключ, будем наблюдать, как эта проволока сначала немного провиснет (она нагрелась и удлинилась), а затем начнёт накаливаться и краснеть.

Тепловое действие тока проявляется не только, когда он течёт в твёрдых проводниках, но и в газах (вспомните молнию), и в жидкостях, в чём можно убедиться на простом опыте. Опустим в стакан с обычной питьевой водой две металлические или угольные пластины — электроды — и пропустим ток от источника, дающего небольшое напряжение.

Уже через 10 — 15 секунд термометр начнёт показывать повышение температуры жидкости.

Читать еще:  Витой кабель через розетку

Причину теплового действия тока можно объяснить, используя простые рассуждения. Электрическое поле, передвигая заряженную частицу, разгоняет её и совершает положительную работу, то есть увеличивает её кинетическую энергию. Но разгоняемая частица неизбежно и многократно сталкивается с частицами среды, (атомами, молекулами и ионами). Сталкиваясь, она передаёт им часть своей энергии, что приводит к увеличению их энергии, а значит, к росту внутренней энергии проводящей среды. Скорость заряженной частицы и её энергия при этом уменьшаются.

Кроме теплового действия, ток может производить в среде и химическое действие. Если внимательно понаблюдать за электродами в только что проводимом опыте, то можно увидеть образование на них мелких пузырьков газа.

Это не кипение воды при соприкосновении её с горячим телом. Электроды едва тёплые, в чём можно убедиться, потрогав их рукой. Это результат химических изменений в воде при пропускании через неё тока.

Поскольку исследование выделяемых газов в условиях школьного кабинета физики затруднительно, то мы видоизменим опыт, используя вместо обычной воды голубой раствор медного купороса CuSO4.

Опустив в сосуд чистые угольные электроды, через 1 — 2 минуты после включения тока мы увидим хорошо заметный красный налёт на одном из электродов, соединённом с отрицательным полюсом источника тока. Это — медь, которая выделяется из сложного соединения. Причём она очень чистая.

Таким образом, химическое действие электрического тока проявляется в том, что при его прохождении через растворы солей, кислот или щелочей на электродах выделяется вещество.

В твёрдых телах, где образующие среду частицы (атомы, молекулы, ионы) весьма жёстко связаны друг с другом и ограничены в своих движениях, химические изменения обычно не происходят.

Химическое действие тока используется на практике. Так английский химик и один из основателей электрометаллургии сэр Г. Дэви разработал методику получения металлов с наименьшим количеством примесей благодаря химическому действию тока.

Действуя по методике, использованной нами в опыте с медным купоросом, можно нанести на поверхности деталей и предметов тонкие слои никеля, хрома, серебра, золота, придающие покрываемым изделиям красивый вид и защищающие их от ржавления. Открытие и техническая разработка данного процесса, который называют гальванотехникой, принадлежит русскому учёному Б. С. Якоби.

Химическое действие ток может производить и в газах. Так, например, нидерландский физик М. Марум по характерному запаху и окислительным свойствам, которые приобретает воздух после пропускания через него электрических искр, открыл озон.

(Озон — это особая форма кислорода, молекулы которого состоят из трёх атомов).

Третье действие тока — магнитное — очень долго ускользало от внимания учёных и было обнаружено опытным путём лишь в 1820 г. датским физиком Х. К. Эрстедом. На одной из лекций он демонстрировал студентам нагрев проволоки электричеством от вольтова столба. На демонстрационном столе в этот момент находился морской компас, поверх стеклянной крышки которого, проходил один из проводов цепи.

Когда Эрстед замкнул цепь, кто-то из студентов случайно заметил, что магнитная стрелка компаса отклонилась в сторону, тем самым фиксируя наличие магнитного поля.

Мы же с вами для наблюдения магнитного действия тока проведём следующий эксперимент. Обмотаем медной изолированной проволокой железный стержень и пропустим по такой катушке ток.

Поднося к ней коробку с мелкими железными предметами (гвозди, шурупы, гайки), мы увидим, что катушка с током превращается в достаточно сильный магнит, причём свойство это связано именно с текущим током. Действительно, выключив ток, мы увидим потерю катушкой магнетизма.

Магнитное действие тока, наблюдаемое в этом опыте, является самым универсальным действием. Оно проявляется при протекании тока как в твёрдых телах, так и в жидкостях, газах. Также если заставить направленно перемещаться заряды в сильно разреженном пространстве, то и здесь ток будет производить магнитное действие (в технике такое явление называют током в вакууме).

Посмотрите внимательно на рисунок, на котором изображён электрический звонок. В основе его работы также лежит магнитное действие электрического тока.

Ток в цепь звонка поступает через клеммы А и В. В точке С проводник с током соединяется с подвижной металлической пластиной, благодаря которой молоточек звонка ударяет по звонковой чаше.

Читать еще:  Ограничение тока подсветки в телевизорах samsung

Теперь рассмотрим взаимодействие проводника с током и магнита.

Поместим между полюсами подковообразного магнита металлическую рамку, соединённую с источником тока. Рамка находится в покое, пока цепь не замкнута, то есть пока в ней нет электрического тока. При замыкании цепи рамка повернётся.

Наблюдаемое нами явление взаимодействия рамки с током и магнита лежит в основе работы гальванометра — прибора, с помощью которого можно судить о наличии тока в проводнике и его направлении.

Стрелка этого прибора связана с подвижной катушкой, и когда в катушке появляется ток, она откланяется, увлекая за собой стрелку прибора.

Во второй половине ХХ в. были созданы принципиально новые источники света. Излучение света происходит в них не за счёт высокой температуры проводящей ток среды, а в силу более сложных процессов. Это светодиодные лампы, которые всё чаще применяются в повседневной жизни.

Здесь используется ещё одно действие тока — световое. Таким образом, световое действие тока обнаруживается в появлении светового излучения при прохождении электрического тока.

Читайте также

Глава 4.1. РАСПРЕДЕЛИТЕЛЬНЫЕ УСТРОЙСТВА НАПРЯЖЕНИЕМ до 1 кВ ПЕРЕМЕННОГО ТОКА и до 1,5 кВ ПОСТОЯННОГО ТОКА

Глава 4.1. РАСПРЕДЕЛИТЕЛЬНЫЕ УСТРОЙСТВА НАПРЯЖЕНИЕМ до 1 кВ ПЕРЕМЕННОГО ТОКА и до 1,5 кВ ПОСТОЯННОГО ТОКА Область применения Вопрос. На какие РУ распространяется настоящая глава Правил?Ответ. Распространяется на РУ и НКУ напряжением до 1 кВ переменного тока и до 1,5 кВ

10.2. Воздействие электрического тока на человека

10.2. Воздействие электрического тока на человека Ток, проходящий через тело человека, действует на организм не только в местах контакта и путях протекания тока, но также и на кровеносную, дыхательную и сердечно-сосудистую системы.Виды травм, связанных с воздействием

Глава 7 Работа электрического потенциального поля

Глава 7 Работа электрического потенциального поля Перейдем к рассмотрению устройств преобразования энергии, в которых, так или иначе, используется электрическое потенциальное поле. Начнем с электростатических моторов. Например, мотор Франклина, рис. 70, отлично

1. Штурмовые действия

1. Штурмовые действия На третий день войны в Корее (1950–1953 гг.) истребители-бомбардировщики совершили первые вылеты на поддержку своих сухопутных войск, отступавших к югу. По признанию американского командования, летный состав не был к тому времени готов к войне. Способы

Глава 4.1. РАСПРЕДЕЛИТЕЛЬНЫЕ УСТРОЙСТВА НАПРЯЖЕНИЕМ ДО 1 КВ ПЕРЕМЕННОГО ТОКА И ДО 1,5 КВ ПОСТОЯННОГО ТОКА

Глава 4.1. РАСПРЕДЕЛИТЕЛЬНЫЕ УСТРОЙСТВА НАПРЯЖЕНИЕМ ДО 1 КВ ПЕРЕМЕННОГО ТОКА И ДО 1,5 КВ ПОСТОЯННОГО ТОКА Область применения Вопрос 1. На какие распределительные устройства распространяется настоящая глава Правил?Ответ. Распространяется на распределительные устройства

§ 1.4 Природа электрического отталкивания и закон Кулона

§ 1.4 Природа электрического отталкивания и закон Кулона Электрические заряды постоянно испускают во всех направлениях частицы, разлетающиеся с постоянной скоростью вдоль прямых линий. Воздействие на заряд зависит лишь от расположения и скорости этих частиц возле

Глава 15 Внутренняя структура электрического потенциального поля

Глава 15 Внутренняя структура электрического потенциального поля Эфир, как и любая физическая среда, существование которой мы можем принять, вместе с Менделеевым, имеет определенные физические свойства. Менделеев писал об упругости данной среды в статье «Попытка

1.4.2. Обнаружение ЦВЗ с нулевым знанием

1.4.2. Обнаружение ЦВЗ с нулевым знанием Робастные ЦВЗ могут применяться в различных приложениях, соответственно, и требования к ним могут предъявляться различные. Можно выделить следующие категории требований к робастным ЦВЗ:— ЦВЗ обнаруживается всеми желающими. В этом

ГЛАВА 4 Что такое молния и гром. «Электрический указатель» Рихмана и «громовая машина» Ломоносова и Рихмана. Вклад Франклина в изучение атмосферного электричества

ГЛАВА 4 Что такое молния и гром. «Электрический указатель» Рихмана и «громовая машина» Ломоносова и Рихмана. Вклад Франклина в изучение атмосферного электричества «Электрический указатель» РихманаЛетом 1753 г. ведущие газеты России и Западной Европы опубликовали

1.4. ИЗУЧЕНИЕ АТМОСФЕРНОГО ЭЛЕКТРИЧЕСТВА

1.4. ИЗУЧЕНИЕ АТМОСФЕРНОГО ЭЛЕКТРИЧЕСТВА Важным и вполне закономерным шагом на пути изучения электрических явлений был переход от качественных наблюдений к установлению количественных связей и закономерностей, к разработке основ теории электричества. Наиболее

2.2. СОЗДАНИЕ ПЕРВОГО ИСТОЧНИКА ЭЛЕКТРИЧЕСКОГО ТОКА

2.2. СОЗДАНИЕ ПЕРВОГО ИСТОЧНИКА ЭЛЕКТРИЧЕСКОГО ТОКА В течение нескольких лет (1792–1795 гг.) А. Вольта не только повторил все опыты Л. Гальвани, но и произвел ряд новых исследований. И если Л. Гальвани искал причину обнаруженных им явлений как физиолог, то А. Вольта, будучи

Читать еще:  Ремонт выключателя света мерседес

2.5. ВЗАИМОДЕЙСТВИЕ ЭЛЕКТРИЧЕСКОГО ТОКА И МАГНИТА

2.5. ВЗАИМОДЕЙСТВИЕ ЭЛЕКТРИЧЕСКОГО ТОКА И МАГНИТА Расширение и углубление исследований электрических явлений привели к открытию и изучению новых свойств электрического тока. О связи электрических и магнитных явлений говорили многие факты, наблюдавшиеся, в частности,

2.12. ПЕРВЫЕ ИСТОЧНИКИ ЭЛЕКТРИЧЕСКОГО ОСВЕЩЕНИЯ

2.12. ПЕРВЫЕ ИСТОЧНИКИ ЭЛЕКТРИЧЕСКОГО ОСВЕЩЕНИЯ В 40–70 гг. XIX в. стали создаваться первые источники электрического освещения. Освещение является естественной и постоянной потребностью человека. Самым долгим был путь от лучины к свече и затем к масляной лампе. В первой

Какое было первое электрическое изобретение

В 1731 году в «Философских трудах», издании «Королевского общества», появилась статья, сделавшая гигантский скачок вперед для молодой электротехники. Ее автор английский ученый Стивен Грей (1670-1736), проводя эксперименты по передаче электрического тока на расстояние, случайно обнаружил, что не все материалы обладают способностью передавать электричество одинаково.

Создание Лейденской банки

Далее произошло создание аккумулятора — «Лейденской банки», устройства для хранения статического электричества. Процесс был случайно обнаружен и исследован голландским физиком Питером Ван Мюссенбруком из Лейденского университета в 1746 году и независимо от него немецким изобретателем Эвальдом Георгом фон Клейстом в 1745 году. Примерно в этот же период русские учёные Г. В. Рихман и М. В. Ломоносов проводили работы по изучению атмосферного электричества.

Производство и практическое использование

Со времён появления первого электричества до массового производства электричества и его практического применения должно было произойти много открытий, и внедрено изобретений в сферу генерирования и передачи электрической энергии.

Генерирование и передача электроэнергии

Со временем стали придумывать различные способы генерирования электричества. С появлением мобильных, а впоследствии гигантских электростанций, возникла проблема передачи электричества на большие расстояния.

Позволить решить этот вопрос помогла научно-техническая революция. В результате были построены огромные сети электропередач, охватывающие страны и целые континенты.

Применение

Практически невозможно назвать сферу деятельности человечества, где бы ни было задействовано электричество. Оно является основным источником энергии во многих жизнеобеспечивающих сферах деятельности человека.

Устройство гальванометра

Гальванометром прибор назвали в честь итальянского физика и врача Луиджи Гальвани. Этот прибор способен измерять маленькие электрические токи (постоянные).

На схемах прибор обозначают кружком, внутри которого расположена большая латинская буква G. На некоторых схемах внутри круга находится стрелка, направленная вертикально вверх.

  • подковообразный магнит и
  • находящуюся внутри него рамку, содержащую витки тонкого медного провода (рис. 8).

Подвижная рамка находится на оси и может вокруг нее поворачиваться.

К рамке прикреплена стрелка. Она указывает, на какой угол рамка повернулась во время протекания в ней электрического тока.

Угол поворота отмечают по делениям шкалы.

Кто такой Луиджи Гальвани

Гальвани был одним из основателей учения об электричестве.

Обнаружил, что в местах контакта различных видов металлов возникает электрическое напряжение.

Проводил опыты с использованием железного ключа и серебряной монеты.

Изучал сокращения мышц под воздействием электричества и пришел к выводу, что мышцы управляются электрическими импульсами, поступающими по нервным волокнам из мозга.

В итальянском городе Болонья неподалеку от здания Болонского университета находится памятник Гальвани. Он находится на площади Piazza Luigi Galvani, носящей имя ученого.

В его честь, так же, назвали один из кратеров на обратной стороне Луны.

А Болонский лицей назван именем Гальвани еще с 1860-го года.

О приборах магнитоэлектрической системы

Такие приборы, содержащие проводящую рамку и небольшой магнит, называют приборами магнитоэлектрической системы. Они получили широкое распространение из-за своего сравнительно простого устройства.

Шкалы приборов можно градуировать в различных единицах измерения, в зависимости от измеряемых физических величин. На основе таких приборов изготавливают вольтметры, амперметры, омметры и т. п.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector