Spkb-optics.ru

СПКБ Оптик
6 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электрическая прочность изоляции автоматических выключателей

Особенности электрической прочности изоляции: способы измерения и причины колебания

Диэлектриками называют вещества, которые не проводят ток, либо проводят его, но плохо. С этими веществами тесно связан пробой изоляции.

Пробой изоляции — это явление, когда диэлектрические части начинают проводить ток, то есть фактически превращаются в проводники.

Если значение напряжённости в электрическом поле веществ увеличивается, что и является причиной пробоев. Для всех диэлектрических веществ есть свои пороги значений электрической прочности изоляции.

Сегодня расскажем, почему прочность изоляции может истончаться и приводит к пробоям в изоляции.

Законодательная база Российской Федерации

Бесплатная горячая линия юридической помощи

  • Энциклопедия ипотеки
  • Кодексы
  • Законы
  • Формы документов
  • Бесплатная консультация
  • Правовая энциклопедия
  • Новости
  • О проекте
Бесплатная консультация
Навигация
Федеральное законодательство
  • Конституция
  • Кодексы
  • Законы

Действия

  • Главная
  • «ИЗДЕЛИЯ МЕДИЦИНСКИЕ ЭЛЕКТРИЧЕСКИЕ. ЧАСТЬ 1. ОБЩИЕ ТРЕБОВАНИЯ БЕЗОПАСНОСТИ. ГОСТ 30324.0-95 (МЭК 601-1-88). ГОСТ Р 50267.0-92» (утв. Постановлением Госстандарта РФ от 14.09.92 N 1169) (ред. от 01.10.2001)

20. Электрическая прочность изоляции

Испытания необходимы только для изоляции, обеспечивающей безопасность.

Электрическая прочность следующей изоляции должна быть испытана (см. также приложение Е):

A-a1. Между НАХОДЯЩИМИСЯ ПОД НАПРЯЖЕНИЕМ частями и ДОСТУПНЫМИ МЕТАЛЛИЧЕСКИМИ ЧАСТЯМИ, которые СОЕДИНЕНЫ С ЗАЖИМОМ ЗАЩИТНОГО ЗАЗЕМЛЕНИЯ.

Эта изоляция должна быть ОСНОВНОЙ ИЗОЛЯЦИЕЙ.

А-а2. Между НАХОДЯЩИМИСЯ ПОД НАПРЯЖЕНИЕМ частями и частями КОРПУСА, не СОЕДИНЕННЫМИ С ЗАЖИМОМ ЗАЩИТНОГО ЗАЗЕМЛЕНИЯ.

Эта изоляция должна быть ДВОЙНОЙ или УСИЛЕННОЙ ИЗОЛЯЦИЕЙ.

А-b. Между НАХОДЯЩИМИСЯ ПОД НАПРЯЖЕНИЕМ частями и токопроводящими частями, отделенными от них только ОСНОВНОЙ ИЗОЛЯЦИЕЙ, являющейся частью ДВОЙНОЙ ИЗОЛЯЦИИ.

Эта изоляция должна быть ОСНОВНОЙ ИЗОЛЯЦИЕЙ.

А-с. Между КОРПУСОМ и токопроводящими частями, изолированными от НАХОДЯЩИХСЯ ПОД НАПРЯЖЕНИЕМ частей только ОСНОВНОЙ ИЗОЛЯЦИЕЙ, являющейся частью ДВОЙНОЙ ИЗОЛЯЦИИ.

Эта изоляция должна быть ДОПОЛНИТЕЛЬНОЙ ИЗОЛЯЦИЕЙ.

А-е. Между НАХОДЯЩИМИСЯ ПОД НАПРЯЖЕНИЕМ частями, не являющимися частями СИГНАЛЬНОГО ВХОДА или СИГНАЛЬНОГО ВЫХОДА, и СИГНАЛЬНЫМИ ВХОДАМИ или СИГНАЛЬНЫМИ ВЫХОДАМИ, не СОЕДИНЕННЫМИ с ЗАЖИМОМ ЗАЩИТНОГО ЗАЗЕМЛЕНИЯ.

Эта изоляция должна быть ДВОЙНОЙ или УСИЛЕННОЙ ИЗОЛЯЦИЕЙ.

Разделение частей может быть обеспечено одним из методов, указанных в пункте 17g), методы 1)-5). Отдельные испытания не требуются, если напряжение, появляющееся на СИГНАЛЬНОМ ВХОДЕ и (или) СИГНАЛЬНОМ ВЫХОДЕ в НОРМАЛЬНОМ СОСТОЯНИИ и в УСЛОВИЯХ ЕДИНИЧНОГО НАРУШЕНИЯ, не превышает значение БЕЗОПАСНОГО СВЕРХНИЗКОГО НАПРЯЖЕНИЯ.

A-f. Между частями противоположной полярности СЕТЕВОЙ ЧАСТИ.

Эта изоляция должна быть ОСНОВНОЙ ИЗОЛЯЦИЕЙ.

Электрическую изоляцию частей A-f следует испытывать только в случае, если после контроля размеров изоляции, включая ПУТИ УТЕЧКИ и ВОЗДУШНЫЕ ЗАЗОРЫ, согласно пункту 57.10 не может быть установлено полное соответствие. Если разделение цепей или защита компонентов, необходимые для исследования частей A-f, невозможны без повреждения ИЗДЕЛИЯ, то изготовитель и испытательная лаборатория должны согласовать другой метод для достижения цели данного исследования.

A-g. Между металлическим КОРПУСОМ (или крышкой), имеющим изнутри прокладку из изоляционного материала, и металлической фольгой в цепях испытания, наложенной на внутреннюю поверхность прокладки. Такая прокладка может быть применена в случае, если расстояние, измеренное через прокладку между НАХОДЯЩИМИСЯ ПОД НАПРЯЖЕНИЕМ частями и КОРПУСОМ (или крышкой), меньше ВОЗДУШНОГО ЗАЗОРА, требуемого согласно пункту 57.10.

Если КОРПУС (или крышка) соединен с ЗАЖИМОМ ЗАЩИТНОГО ЗАЗЕМЛЕНИЯ, ВОЗДУШНЫЙ ЗАЗОР должен соответствовать ОСНОВНОЙ ИЗОЛЯЦИИ и прокладка должна быть ОСНОВНОЙ ИЗОЛЯЦИЕЙ.

Если КОРПУС (или крышка) не СОЕДИНЕН С ЗАЖИМОМ ЗАЩИТНОГО ЗАЗЕМЛЕНИЯ, ВОЗДУШНЫЙ ЗАЗОР должен соответствовать УСИЛЕННОЙ ИЗОЛЯЦИИ.

Если расстояние между НАХОДЯЩИМИСЯ ПОД НАПРЯЖЕНИЕМ частями и внутренней поверхностью прокладки не меньше, чем ВОЗДУШНЫЙ ЗАЗОР, требуемый для ОСНОВНОЙ ИЗОЛЯЦИИ, это расстояние должно рассматриваться как ОСНОВНАЯ ИЗОЛЯЦИЯ. Прокладка в этом случае должна быть ДОПОЛНИТЕЛЬНОЙ ИЗОЛЯЦИЕЙ. Если расстояние меньше, чем требуемое для ОСНОВНОЙ ИЗОЛЯЦИИ, то прокладка должна быть УСИЛЕННОЙ ИЗОЛЯЦИЕЙ.

A-h. He использован.

A-j. Между доступными частями, не СОЕДИНЕННЫМИ С ЗАЖИМОМ ЗАЩИТНОГО ЗАЗЕМЛЕНИЯ, которые могут оказаться под напряжением при нарушении изоляции ШНУРА ПИТАНИЯ, либо металлической фольгой, обернутой вокруг ШНУРА ПИТАНИЯ внутри входных втулок, креплений шнура и т.п., либо металлическим стержнем, диаметр которого равен диаметру ШНУРА ПИТАНИЯ, введенным вместо него.

Эта изоляция должна быть ДОПОЛНИТЕЛЬНОЙ ИЗОЛЯЦИЕЙ.

A-k. Между СИГНАЛЬНЫМ ВХОДОМ и СИГНАЛЬНЫМ ВЫХОДОМ (поочередно) и ДОСТУПНЫМИ ЧАСТЯМИ, не СОЕДИНЕННЫМИ с ЗАЖИМОМ ЗАЩИТНОГО ЗАЗЕМЛЕНИЯ.

Эта изоляция должна быть ДВОЙНОЙ ИЗОЛЯЦИЕЙ или УСИЛЕННОЙ ИЗОЛЯЦИЕЙ.

Эта изоляция не испытывается, если выполняется, по меньшей мере, одно из следующих условий:

a) Напряжения на СИГНАЛЬНОМ ВХОДЕ или СИГНАЛЬНОМ ВЫХОДЕ при НОРМАЛЬНОЙ ЭКСПЛУАТАЦИИ не превышают значения БЕЗОПАСНОГО СВЕРХНИЗКОГО НАПРЯЖЕНИЯ.

b) ТОКИ УТЕЧКИ при нарушении одного из компонентов СИГНАЛЬНОГО ВХОДА или СИГНАЛЬНОГО ВЫХОДА не превышают значений, допустимых в УСЛОВИЯХ ЕДИНИЧНОГО НАРУШЕНИЯ.

c) СИГНАЛЬНЫЙ ВХОД или СИГНАЛЬНЫЙ ВЫХОД соединен с ЗАЖИМОМ ЗАЩИТНОГО ЗАЗЕМЛЕНИЯ или отделен от ДОСТУПНЫХ ЧАСТЕЙ одним из методов, указанных в п.17g).

d) СИГНАЛЬНЫЙ ВХОД или СИГНАЛЬНЫЙ ВЫХОД предназначен изготовителем исключительно для присоединения к ИЗДЕЛИЯМ, удовлетворяющим требованиям, указанным для них в ЭКСПЛУАТАЦИОННЫХ ДОКУМЕНТАХ ИЗДЕЛИЯ.

Читать еще:  Эксплуатация выключателей впм 10

У ИЗДЕЛИЙ с РАБОЧЕЙ ЧАСТЬЮ должна быть также испытана электрическая прочность следующей изоляции (см. также приложение Е).

В-а. Между РАБОЧЕЙ ЧАСТЬЮ (ЦЕПЬ ПАЦИЕНТА) и НАХОДЯЩИМИСЯ ПОД НАПРЯЖЕНИЕМ частями.

Эта изоляция должна быть ДВОЙНОЙ или УСИЛЕННОЙ ИЗОЛЯЦИЕЙ.

Эту изоляцию не требуется испытывать отдельно, если рассматриваемые части разделены, как указано в пункте 17 а), методы 1), 2) или 3). В этом случае испытание заменяется испытаниями В-с и B-d.

Если средство разделения РАБОЧЕЙ ЧАСТИ и НАХОДЯЩИХСЯ ПОД НАПРЯЖЕНИЕМ частей состоит из изоляции более чем одной цепи, в частности цепей с существенно различными рабочими напряжениями, следует следить, чтобы каждая часть средств разделения подвергалась воздействию испытательного напряжения, соответствующего рабочему напряжению. Это может означать, что испытание В-а потребуется заменить двумя или более испытаниями отдельных частей средств разделения.

В-b. Между частями РАБОЧЕЙ ЧАСТИ и (или) между РАБОЧИМИ ЧАСТЯМИ.

См. частные стандарты.

В-с. Между РАБОЧЕЙ ЧАСТЬЮ и частями, не соединенными с ЗАЖИМОМ ЗАЩИТНОГО ЗАЗЕМЛЕНИЯ и изолированными от НАХОДЯЩИХСЯ ПОД НАПРЯЖЕНИЕМ частей только ОСНОВНОЙ ИЗОЛЯЦИЕЙ.

Эта изоляция должна быть ДОПОЛНИТЕЛЬНОЙ ИЗОЛЯЦИЕЙ.

Эту изоляцию не требуется отдельно испытывать, если рассматриваемые части эффективно разделены, как указано в пункте 17 а), метод 1), 2) или 3).

B-d. Между РАБОЧЕЙ ЧАСТЬЮ ТИПА F (ЦЕПЬЮ ПАЦИЕНТА) и КОРПУСОМ, включая СИГНАЛЬНЫЕ ВХОДЫ и СИГНАЛЬНЫЕ ВЫХОДЫ. См. также пункты 20.3 и 20.4j)

Эта изоляция должна быть ОСНОВНОЙ ИЗОЛЯЦИЕЙ. См. также В-е.

В-е. Между РАБОЧЕЙ ЧАСТЬЮ ТИПА F (ЦЕПЬЮ ПАЦИЕНТА) и КОРПУСОМ ИЗДЕЛИЯ в случае, если РАБОЧАЯ ЧАСТЬ ТИПА F содержит НАПРЯЖЕНИЯ, воздействующие на изоляцию от КОРПУСА при НОРМАЛЬНОЙ ЭКСПЛУАТАЦИИ, включая заземление любого участка РАБОЧЕЙ ЧАСТИ.

Эта изоляция должна быть ДВОЙНОЙ или УСИЛЕННОЙ ИЗОЛЯЦИЕЙ.

B-f. He использован (см. В-а).

Электрическая прочность электрической изоляции при рабочей температуре после предварительного воздействия влагой, а также после каждого требуемого стерилизационного процесса, если он применяется (см. пункт 44.7), должна быть достаточной, чтобы выдержать испытательные напряжения, указанные в таблице V.

Таблица V — Испытательные напряжения

См. приложение М.

Испытуемая изоляцияИспытательные напряжения для рабочего напряжения U, В
U 150150 250250 10001000 1000010000 .

См. приложение М.

Необходимо принять меры при размещении металлической фольги, чтобы исключить возникновение поверхностного перекрытия на краях изоляции. Если это возможно, то металлическую фольгу необходимо передвигать так, чтобы испытать все части поверхности.

*j) Потребляющие энергию устройства, ограничивающие напряжение, которые включены параллельно с испытуемой изоляцией, должны быть отсоединены от заземленной части цепи.

Лампы, электронные трубки, полупроводники или другие автоматические регулирующие устройства могут быть удалены или приведены в нерабочее состояние, если это необходимо для проведения испытаний.

Защитные устройства, подключенные между РАБОЧЕЙ ЧАСТЬЮ ТИПА F u КОРПУСОМ, отключаются, если они могут сработать при испытательном или более низком напряжении (см. пункт 59.3).

k) За исключением испытаний изоляций, указанных в пунктах 20.1 А-b, 20.1 A-f, 20.1 A-g, 20.1 A-j u 20.2 B-b, выводы СЕТЕВОЙ ЧАСТИ, СИГНАЛЬНОГО ВХОДА, СИГНАЛЬНОГО ВЫХОДА и РАБОЧЕЙ ЧАСТИ (если это применимо) соответственно должны быть замкнуты накоротко во время испытаний.

1) Если электродвигатели снабжены конденсаторами и резонансное напряжение U_c может возникнуть между точкой, где обмотка и конденсатор соединены вместе с одной стороны, и любым зажимом для наружных проводов с другой стороны, то испытательное напряжение 2U_c+1000 В должно прикладываться между точкой, где обмотка и конденсатор соединены вместе, и КОРПУСОМ ИЗДЕЛИЯ или токопроводящими частями, отделенными от НАХОДЯЩИХСЯ ПОД НАПРЯЖЕНИЕМ частей только ОСНОВНОЙ ИЗОЛЯЦИЕЙ.

Во время испытаний части, не упомянутые выше, должны быть отсоединены, а конденсатор должен быть замкнут накоротко.

Газ и изоляция

Казалось бы, как связана ионизация газов и изоляция электрооборудования? Газ и электричество связаны самым тесным образом, ведь он является отличным диэлектриком. И поэтому для изоляции высоковольтного оборудования используется газовая среда.

В качестве диэлектрика используются: воздух, азот и элегаз. Элегаз – это гексафторид серы, наиболее перспективный, в плане электроизоляции материал. Для распределения и приема электроэнергии высокого напряжения, более 100 кВ (отвод электростанций, прием электричества в крупных городах и так далее), используются комплектные распределительные устройства (КРУЭ).

Основной областью применения элегаза как раз и являются КРУЭ. Газ помимо использования в качестве электроизоляции, может возникать в процессе эксплуатации маслонаполненных кабелей (или кабелей с пропитанной бумажной изоляцией). Так как происходят цикличный нагрев и охлаждение кабеля в результате прохождения напряжения разной величины.

К кабелям с пропитанной бумажной изоляцией применим термин «термическая деструкция». В результате пиролиза целлюлозы возникают водород, метан, углекислый и угарный газы. В процессе старения изоляции, возникающие газовые образования (при повышенном напряжении) вызывают ионизационный пробой изоляции. Как раз по причине ионизационных явлений силовые кабели с изоляцией из пропитанной маслом бумаги (с вязкой пропиткой) применяются в силовых линиях напряжением до 35 кВ и все реже применяются в современной энергетике.

Параметры изоляции

К основным параметрам электроизоляции относят электрическую прочность, удельное электрическое сопротивление, относительную диэлектрическую проницаемость, угол диэлектрических потерь. При оценке электроизоляционных свойств материала учитывается также зависимость перечисленных характеристик от величин электрического тока и напряжения.

Электроизоляционные изделия и материалы обладают большей величиной электрической прочности в сравнении с проводниками и полупроводниками. Важна также для диэлектрика стабильность удельных величин при нагревании, повышении напряжении и других изменениях.

Классификация диэлектрических материалов

Выбор того или иного изоляционного материала зависит от мощности тока, протекающего по проводникам оборудования. Существует несколько критериев для классификации диэлектриков, но наиболее важными являются два – агрегатное состояние и происхождение. Для изоляции шнуров бытовых электроприборов используют твердые изоляторы, трансформаторов и прочего высокомощного оборудования – жидкие и газообразные.

Классификация по агрегатному состоянию

По агрегатному состоянию выделяют три типа диэлектрических материалов – твердые, жидкие и газообразные.

Твердые диэлектрики

Электроизоляционные материалы данного типа считаются наиболее распространенными и популярными, используются практически во всех сферах, где присутствует оборудование с токоведущими частями. Их качество зависит от некоторых химических свойств, при этом диэлектрическая проницаемость может быть совершенно разной – 10-50 000 (безразмерная величина).

Твердые изоляторы бывают полярными, неполярными и сегнетоэлектрическими. Главное отличие трех разновидностей – принцип поляризации. Основными свойствами данных материалов являются химическая стойкость, трекингостойкость и дендритостойкость. От химической стойкости зависят возможности диэлектрика противостоять воздействию агрессивной среды – кислотам, щелочам, активным жидкостям. Трекингостойкость влияет на защиту от электрической дуги, дендритостойкость – от появления дендритов.

Керамические изоляторы эксплуатируют как линейные и проходные диэлектрики в составе подстанций. Для защиты бытовых электрических приборов могут применяться текстолиты, полимеры и бумажные изделия, промышленного оборудования – лаки, картон и различные компаунды.

Сочетая несколько разных материалов, производителям диэлектриков удается получить особые свойства изделия. Благодаря этому повышается устойчивость к нагреву, воздействию влаги, экстремально низких температур и даже радиации.

Наличие нагревостойкости говорит о том, что изолятор способен выдерживать высокие температуры, но в каждом отдельном случае максимальная планка будет разной (она может достигать и 200, и 700 град. Цельсия). К числу таковых относятся стеклотекстолитовые, органосиликатные и некоторые полимерные материалы. Фторопластовые диэлектрики устойчивы к воздействию влаги, могут эксплуатироваться в тропиках. Вообще фторопласт не только гидрофобен, но еще и негигроскопичен.

Если в состав электротехнического оборудования включены атомные элементы, то важно использовать изоляцию, устойчивую к радиоактивному фону. На помощь приходят неорганические пленки, часть полимеров, стеклотекстолиты и различные слюдинитовые изделия.

К морозостойким диэлектрикам относятся компоненты, сохраняющие свои удельные свойства при температуре до -90 град. Цельсия. Наконец, в электроприборах, эксплуатируемых в космосе, применяются изоляционные материалы с повышенной вакуумной плотностью (например, керамика).

Жидкие диэлектрики

Диэлектрики в подобном агрегатном состоянии зачастую эксплуатируются в промышленном электрооборудовании. Наиболее ярким примером являются трансформаторы, для безопасной работы которых требуется специальное масло. К числу жидких диэлектриков можно отнести сжиженный газ, парафиновое или вазелиновое масло, спреи, дистиллированную воду, которая была очищена от солей и других примесей.

Жидкие электроизоляционные материалы описываются следующими технико-эксплуатационными характеристиками:

  • диэлектрическая проницаемость;
  • электропрочность;
  • электропроводность.

Величина физических параметров жидких диэлектриков зависит от степени их чистоты (загрязнения). Наличие твердых примесей в воде или масле приводит к существенному повышению электрической проводимости, что связано с увеличением числа свободных электронов и ионов. Жидкости очищаются разными методами, начиная от дистилляции и заканчивая ионным обменом. После выполнения данного процесса повышается электропрочность материала и снижается его электропроводность.

Жидкие электроизоляторы можно разделить на три основные группы:

  1. Из нефти изготавливают трансформаторное, конденсаторное и кабельное масла.
  2. Синтетические жидкости активно применяются в промышленном приборостроении. К их числу можно отнести соединения на основе фтор- и кремнийорганики. Кремнийорганические материалы способны выдерживать сильные морозы, они относятся к числу гигроскопичных, поэтому могут применяться в малых трансформаторах. С другой стороны, стоимость таких соединений намного выше, чем у нефтяных масел.
  3. Растительные жидкости крайне редко используются при изготовлении электроизоляции. Речь идет о касторовом, льняном, конопляном и других маслах. Все перечисленные вещества считаются слабополярными диэлектриками, поэтому могут применяться только для пропитки бумажных конденсаторов или для образования пленки в электроизоляционных лаках и красках.

Газообразные диэлектрики

Самыми популярными газообразными диэлектриками считаются электротехнический газ, азот, водород и воздух. Все они могут быть разделены на две категории – естественные и искусственные. К первым относится воздух, который часто эксплуатируют в качестве диэлектрика для защиты токоведущих частей линий электрической передачи и машин.

Наряду с преимуществами, есть у воздуха недостатки, из-за чего он не подходит для эксплуатации в герметичном оборудовании. Поскольку в его состав входит большое содержание кислорода, то данный газ является окислителем, поэтому в неоднородном поле существенно снижается электрическая прочность.

Азот – отличный вариант для изоляции силовых трансформаторов и высоковольтных линий электропередач. Помимо хороших изоляционных свойств, водород способен принудительно охлаждать оборудование, поэтому зачастую применяется в высокомощных электромашинах. Для герметизированных установок подойдет электротехнический газ, при использовании которого снижается взрывоопасность любых агрегатов. Электротехнический газ часто эксплуатируется в высоковольтных выключателях, что обусловлено способностью к гашению электрической дуги.

Классификация по происхождению

По происхождению диэлектрики делятся на органические и неорганические.

Органические диэлектрики

Органические электроизоляционные изделия можно разделить на естественные и синтетические. Все материалы, относящиеся к первой категории, в последнее время практически не эксплуатируются, что связано с увеличением производственных мощностей синтетических диэлектриков, стоимость которых намного ниже.

Естественными диэлектриками являются растительные масла, парафин, целлюлоза и каучук. К синтетическим материалам можно отнести пластмассы и эластомеры разных типов, применяемые в бытовых приборах и другой электротехники.

Неорганические диэлектрики

Электроизоляционные материалы неорганического типа бывают естественные и искусственными. Из компонентов природного происхождения можно выделить слюду с большой устойчивостью к воздействию химически активных веществ и высоких температур. Не менее популярными являются мусковит и флогопит.

Искусственные диэлектрики – стекло в чистом или разбавленном видах, фарфор и керамика. Материалам данной категории зачастую придают особые свойства, добавляя в их состав различные компоненты. Если изолятор проходной, то нужно применять полевошпатовую керамику с большим тангенсом диэлектрических потерь.

Волокнистые электроизоляционные материалы

Волокнистые диэлектрики эксплуатируются для защиты различного оборудования. К числу таковых относятся каучук, целлюлоза, различные ткани, нейлоновые и капроновые изделия, полистирол и полиамид.

Органические волокнистые диэлектрики имеют высокую гигроскопичность, поэтому практически никогда не используются без специальной пропитки. В последние годы вместо органических изоляторов применяют синтетические волокнистые изделия с ярко выраженной нагревостойкостью.

В качестве примера можно выделить стеклянные волокна и асбест: первые пропитываются лаками и смолами, улучшающими гидрофобность, вторые характеризуются минимальной прочностью, поэтому в их состав добавляют хлопчатобумажные элементы. Речь идет о материалах, которые не плавятся при нагреве.

Изоляция проводов, заключение

Как видите, в изоляции проводов нет ничего сложного. Все виды довольно доступны и отличаются между собой разновидностью материалов, с помощью которых и происходит правильная изоляция проводов. Помните о том, что качество проделанной изоляции проводов в впоследствии повлияет на электросети и электроприборы, подключенные к ним. Поэтому к данной задаче нужно подходить очень ответственно и помнить о том, что после изоляции нужно сделать проверку с помощью специального прибора мегомметра и лучше это дело доверить специалисту.

  • Какой провод лучше использовать для проводки в квартире или доме. Рекомендации электриков
  • Как подключить электрическую плиту? Как сделать это быстро и безопасно
  • Почему выбивает пробки в квартире и что делать в этом случае?
  • Какого диаметра бывают провода и как определить сечение по диаметру. Таблица диаметров
  • Рассказываем как быстро и легко подключить люстру. Секреты электрика для вас

Защитные устройства

В современном мире с каждым годом увеличивается спрос на электротехническую продукцию, а на замену устаревшему оборудованию приходит новое. Без таких устройств невозможна работа электросети. Кроме того, они обеспечивают безопасность эксплуатации и увеличивают срок службы бытовых приборов и промышленного оборудования.

Также такая продукция позволяет автоматизировать некоторые процессы. Примером могут служить автоматические выключатели, которые проводят ток цепи в нормальных режимах и автоматически защищают электрические сети и оборудование от аварийных режимов.

Немаловажным является устройство защитного отключения. Оно отключает систему в случае утечки тока в результате пробоя на корпус электрических нагревателей, духовых шкафов, стиральных машин и других бытовых приборов, и таким образом защищает человека от поражения электрическим током.

Одним из наиболее современных защитных устройств являются дифференциальные автоматы, которые совмещают в себе функции автоматического выключателя и УЗО.

Электроизоляционные лакированные ткани

Этот вид диэлектрика характеризуется тем, что изготавливается на основе ткани, пропитанной лаком. Нанесение изолятора на ткань происходит при помощи кисточки. Такой лак образует пленку, обладающую требуемыми диэлектрическими свойствами.

Ткань, применяемая в такой изоляции, преимущественно хлопчатобумажная. Также встречаются материалы на шелковой, капроновой и стеклянной основе. Стекловолокнистая ткань характеризуется повышенной устойчивостью к высоким температурам. Основной сферой применения таких тканей будут являться электрические машины и аппараты, где важна гибкость изоляционного материала.

Заметка. Наиболее часто использующимся электриками изолятором подобного вида является обычная ПВХ лента или, по-простому, изолента.

В этой статье были кратко рассмотрены типы изоляции, свойства и условия применения данного материала. Статья будет полезна как опытным электротехникам, так и впервые пробующим свои силы домашним мастерам. Она поможет подобрать требуемую изоляцию проводников и кабелей, согласно конкретным условиям рабочего процесса.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector