Spkb-optics.ru

СПКБ Оптик
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электромагнитные выключатели способ гашения дуги

Гашение электрической дуги в цепях постоянного и переменного тока

Гашение электрической дуги в цепях постоянного тока. При размыкании контактов аппарата, находящегося в цепи постоянного тока, возникает дуговой разряд. Для гашения возникающей дуги постоянного тока обычно стремятся повысить напряжение на дуге (и ее сопротивление) или путем растяжения дуги, или путем повышения напряженности электрического поля в дуговом столбе, а большей частью – одновременно и тем и другим путями. Это достигается применением специальных дугогасительных камер в выключающих аппаратах, задача которых состоит в том, чтобы обеспечивать быстрое растяжение дуги и повышения напряжения на ней, с одной стороны, а с другой, – ограничивать распространение порождаемого ею пламени и раскаленных газов в приемлемом объеме пространства.
Электрическую цепь следует отключать так, чтобы перенапряжения не превышали тех величин, которые может выдержать без пробоя электрическая изоляция. Такие условия выполняются в рационально сконструированных выключателях с электрической дугой, при гашении которой большая часть электромагнитной энергии цепи превращается в тепловую и рассеивается столбом дуги в окружающую среду. В результате энергия, запасаемая в емкости, и перенапряжения на емкости снижаются. В этом отношении электрическая дуга играет положительную роль.

Напряжение на дуговом промежутке Uд меняется в процессе гашения дуги в соответствии с вольтамперной характеристикой (ВАХ) дугогасительного устройства. Для многих видов этих устройств ВАХ такова, что при малых токах напряжение Uд принимает большие значения. Это определяет возможность больших перенапряжений при гашении дуги. При применении ДУ типа дугогасительной решетки, в которой Uд почти не зависит от тока, а при малых токах остается относительно небольшим, эти перенапряжения значительно снижаются.

На рис. 3.5 представлены две формы ВАХ, где зависимость 1 имеет малое напряжение в области больших токов и очень высокий пик напряжения в области малых токов, а зависимость 2, наоборот, характеризуется более высокими напряжениями на дуге в области больших токов и имеет небольшой подъем напряжения при подходе тока к нулю. Вид 2 (см. рис. 3.5) приобретает ВАХ дуги, затянутой в узкую щель между плоскостями из жаростойкой керамики. В этом случае при больших токах дуговой столб испытывает сильную деформацию и подвергается интенсивному охлаждению. Вследствие этого напряжение на дуге значительно возрастает. В области же малых токов сечение дугового канала делается небольшим, следовательно, охлаждающее влияние плоскостей резко снижается, что приводит к относительно низким значениям напряженности электрического поля и напряжения на дуговом канале. Форму характеристики, подобную 1 (см. рис. 3.5), можно наблюдать, если контакты аппарата постоянного тока были погружены в масло. В этом случае охлаждающая и деионизирующая роль масла в области большого тока может быть незначительной, т.к. дуговой канал окутан газовым пузырем с малой теплопроводностью. В области же малых токов окружающее дугу масло может тесно соприкасаться с дуговым каналом, что существенно повышает отбор тепла от дугового канала и ведет к повышению напряженности на нем.

Задача гашения дуги постоянного тока сводится к соблюдению одного из двух основных условий:

· увеличению напряженности электрического поля Е в дуговом столбе, увеличению длины дуги или увеличению суммы падений напряжений у электродов. Последнее достигается увеличением количества металлических электродов, разбивающих дугу на ряд коротких дуг. Все эти факторы приводят к повышению напряжения на межконтактном промежутке;

· увеличению сопротивления или снижению напряжения цепи.

Необходимо отметить, что чрезмерное увеличение длины дуги приводит к возрастанию размеров ДУ и может порождать в некоторых случаях значительные перенапряжения, опасные для изоляции установок, находящихся в коммутируемой цепи.

Весьма часто в ДУ постоянного тока применяют магнитное дутье, т.е. создают в зоне горения дуги поперечное магнитное поле, которое увеличивает скорость перемещения (и растяжения) дуги и способствует вхождению дугового столба в узкие щели между изоляционными стенками, что активно способствует гашению дуги и улучшает форму ВАХ.

Гашение электрической дуги в цепях переменного тока. Дуга переменного тока обычно гасится значительно легче, чем дуга постоянного тока. Чтобы погасить дугу постоянного тока, надо насильственно свести к нулю ток цепи путем непрерывного увеличения сопротивления дугового столба (практически ®¥).

При переменном токе этого делать не требуется: здесь через каждый полупериод ток естественным путем проходит через нулевое значение, и надо лишь воспользоваться этим обстоятельством и создать вблизи перехода через ноль такие условия в межконтактном пространстве, чтобы протекание тока цепи вслед за этим переходом не возобновлялось. Поэтому условия гашения дуги переменного тока следует трактовать иначе, чем условия гашения дуги постоянного тока.

Однако существует ряд случаев, которые оказывают специфическое влияние на условия гашения дуги переменного тока.

Открытая дуга переменного тока при высоком напряжении источника. Открытая дуга переменного тока в моменты перехода через ноль сохраняет высокую проводимость, и поэтому в установках высокого напряжения гашение открытой дуги происходит не вследствие перехода тока через ноль и образования прочности промежутка, а главным образом вследствие растяжения дугового столба и образования на нем высокого напряжения горения. При таком режиме ток в цепи начинает заметно падать за несколько периодов до полного обрыва дуги, и причиной его ограничения является возрастание сопротивления канала дуги.

При определенной длине дуги переменного тока напряжение сети оказывается недостаточным для поддержания горения дуги, наступает нарушение баланса мощностей (подводимой и отводимой), и ток цепи довольно быстро уменьшается и, наконец, совсем прекращается. Таким образом, в цепях, содержащих только активное сопротивление, критический ток и критическая длина дуги определяются выражениями: ; , где Iз – действующее значение тока цепи при закороченном дуговом промежутке. Для цепей с индуктивным сопротивлением эти

выражения примут вид: ; , т.е. в цепях с индуктивным сопротивлением Iкр и lкр имеют более высокие значения.

Дуга переменного тока в условиях активной деионизации. Если столб дуги переменного тока подвергается интенсивной деионизации, то в этом случае механизм гашения дуги существенно меняется по сравнению с гашением открытой дуги в цепи высокого напряжения. За счет активного воздействия газовой или жидкой среды диаметр дугового канала сокращается (плотность тока повышается), и изменение его следует почти синхронно с током. При подходе тока к нулю дуговой столб приобретает весьма малые размеры и благодаря этому быстро распадаетсяпосле достижения током нулевого значения, теряет свою проводимость и приобретает заметную электрическую прочность. В таком случае восстановление дуги в следующий полупериод связано с пробоем межконтактного промежутка. Эти условия характерны для отключающих аппаратов высокого напряжения.

Читать еще:  Классы селективности автоматических выключателей

Электрооборудование трамваев и троллейбусов

  • Общие сведения и технические характеристики электрических машин постоянного тока
  • Характеристики тяговых двигателей
  • Конструкция электродвигателей
  • Вспомогательные электрические машины на напряжение 550 В
  • Вспомогательные электрические машины на напряжение 24 и 12 В
  • Генераторы собственных нужд
  • Обслуживание электрических машин
  • Характеристики токоприемников
  • Конструкция токоприемников и их обслуживание
  • Пускотормозные реостаты
  • Регулировочные реостаты и индуктивные шунты
  • Контактные соединения, контактные материалы
  • Способы гашения электрической дуги
  • Расчет обмоток электромагнита
  • Электромагнитные контакторы
  • Устройство и компоновка контакторных панелей
  • Групповые аппараты
  • Контроллеры косвенного управления подвижным составом
  • Групповые реостатные контроллеры
  • Ускоритель вагона Т-3
  • Реверсивные переключатели
  • Отключатели тяговых двигателей
  • Реле автоматического пуска и торможения
  • Реле управления
  • Аппараты токовой защиты
  • Аппараты защиты по напряжению
  • Аппараты защиты от атмосферных перенапряжений
  • Защита радиоприема от помех, вызываемых электрическим оборудованием подвижного состава
  • Характеристика систем управления
  • Регулирование напряжения на тяговых двигателях при реостатном пуске
  • Регулирование возбуждения тяговых двигателей при пуске
  • Электрическое торможение
  • Тормозные характеристики и схемы реостатного торможения
  • Электрическая схема троллейбуса 9Тр
  • Электрическая схема троллейбуса ЗиУ-9
  • Электрическая схема вагона РВЗ-6М-2
  • Электрическая схема вагона КТМ-5М-3
  • Электрическая схема вагона Т-3
  • Импульсное управление на электрическом подвижном составе
  • Импульсное регулирование напряжения на тяговых двигателях при пуске
  • Импульсное регулирование напряжения на тяговых двигателях при торможении
  • Тиристорно-импульсное регулирование возбуждения тяговых двигателей
  • Сглаживающие устройства в системах с тиристорно-импульсным управлением
  • Схемы тиристорных прерывателей
  • Защита силовых полупроводниковых приборов в тиристорных регуляторах
  • Принципы построения схем управления тиристорных регуляторов
  • Конструкция электрооборудования
  • Электрические схемы вагона РВЗ-7 с тиристорно-импульсным управлением
  • Электрическая схема электронного блока управления вагона РВЗ-7
  • Электрические цепи напряжением 550 В
  • Аккумуляторные батареи
  • Реле-регуляторы
  • Схемы вспомогательных цепей напряжением 24 и 12 В троллейбусов и трамваев
  • Список литературы

Электродинамический тормоз электровозов ЧС2 Т и ЧС200

Рассмотрены устройство и работа основного электронного оборудования, применяемого в электродинамическом (реостатном) тормозе системы «Шкода». Применительно к электродинамическому тормозу электровозов ЧС2 Т и его модификации на скоростном электровозе ЧС200

Как образуется сварочная дуга

  • Вначале между концом электрода и деталью появляется контакт, затрагивающий обе поверхности.
  • Под действием тока с высокой плотностью, частицы поверхностей быстро расплавляются, образуя прослойку жидкого металла. Она постоянно увеличивается в направлении электрода, после чего наступает ее разрыв.
  • В этот момент металл очень быстро испаряется и промежуток разряда начинают заполнять ионы и электроны. Приложенное напряжение заставляет их двигаться к аноду и катоду, в результате происходит возбуждение сварочной дуги.
  • Начинается процесс термической ионизации, при котором положительные ионы и свободные электроны продолжают концентрироваться, газ дугового промежутка еще более ионизируется и сама дуга становится устойчивой.
  • Под ее влиянием металлы заготовки и электрода расплавляются и, находясь в жидком состоянии, смешиваются между собой.
  • После остывания, в этом месте образуется сварочный шов.

Как это ни странно, но физики нашли применение этому электрическому явлению ещё на этапе развития науки об электричестве. Пример тому – лампочка Яблочкова. Она состояла из двух угольных электродов, между которыми зажигалась электрическая дуга.

У этой лампы были два недостатка. Электроды быстро изнашивались (выгорали), а спектр света смещался в ультрафиолетовую зону, что негативно влияло на зрение. По этим причинам дуговые лампы не нашли широкого применения и их быстро вытеснили лампы накаливания, существующие до сегодняшнего дня.

Исключение составляют дугоразрядные лампы, а также мощные прожектора, используемые преимущественно в военных целях.
Дуговой разряд стал массово применяться на практике с момента изобретения сварочного аппарата. Дуговую сварку применяют для сварки металлов. (см. рис. 5)

Рис. 5. Дуговая сварка

Используя проводимость плазмы, включая в сварочную цепь специальные сварочные электроды, достигают высокой температуры в сосредоточенном пятне. Регулируя сварочный ток, сварщик имеет возможность настроить аппарат на нужную температуру дугового разряда. Для защиты ствола от тепловых потерь, металлические электроды покрыты специальной смесью, обеспечивающей стабильность горения.

Электрическую дугу применяют в доменных печах для плавки металлов. Дуговая плавка удобна тем, что можно регулировать её температуру путём изменения параметров тока.

Наряду с полезным применением, в электротехнике часто приходится бороться с дуговыми разрядами. Не контролированный дуговой разряд может нанести существенный вред на линиях электропередач, в промышленных и бытовых сетях.

Рис. 6. Дуговой разряд на ЛЭП

Знакомство с масляным выключателем

Масляный выключатель — это коммутационное устройство, предназначенное для включения и отключения силовых высоковольтных цепей и электрооборудования как под нагрузкой, так и без неё. Этот процесс разрыва электрической цепи выполняется выключателем за счет размыкания силовых контактов, погружённых в трансформаторное масло, и за счёт этого происходит гашение электрической дуги между ними.

То есть масло служит дугогасительной средой и справляется со своей задачей весьма эффективно. Устанавливаются они почти всегда в ячейках КРУ (комплектное распределительное устройство) или КСО (камера сборная односторонняя), а также в ОРУ (открытых распределительных устройствах). После размыкания контактов выключателя масло служит для гашения дуги и как изолирующий материал между высоковольтными контактами.

Только выключатели маломасляные устроены таким образом, что масло в них служит исключительно для дугогашения, и лишь частично для изоляции.

Во время процесса отключения в масле, при возникновении дуги в области контакта достигается очень высокая температура, порядка 6 тыс. градусов. Однако, за счёт свойств масла и химической реакции с парами, возникающими во время этого процесса, выделение теплоты при горении дуги не наносит вреда этому электрическому коммутационному устройству.

Читать еще:  Выключатель автоматический трехполюсный 125а tmax

Устройство и принцип действия масляных выключателей

Все масляные выключатели конструктивно состоят из:

  1. Силовой контактной группы. В неё входит подвижный (свеча) и неподвижный контакт (розетка), между которым и возникает дуга, гасящаяся в масле;
  2. Изоляторы, которые обеспечивают надёжную изоляцию токопроводящих частей от корпуса, и друг от друга;
  3. Одного или трёх баков с трансформаторным маслом;
  4. Группы блок-контактов, выполняющих контролирующую и управляющую роль;
  5. Приводы к масляным выключателям, собраны на довольно мощной включающей катушке, называющейся соленоидом или катушкой соленоида. Отключающая катушка выполняет роль ударного механизма, сбивающего с защёлки включенное устройство выключателя. Также привод может быть ручной;
  6. Специальные отключающие пружины, которые размыкают силовую часть при отключении. За счёт них зависит скорость расхождения контактов.

При подаче питания на катушку соленоида включения его массивный сердечник втягивается, тем самым приводя в движение рычажный механизм, который, в свою очередь, направляет подвижные контакты, то есть свечи, в направлении розеток. Также механизм включения может быть выполнен и на ручном приводе, тогда работу соленоида должен будет выполнять человек, с помощью специального рычага, разумеется, в диэлектрических перчатках.

После тока как свечи вошли в розетку на 20–25 мм, механизм масляного выключателя встаёт на защёлку. Во время работы, в ячейках где установлены высоковольтные выключатели, должны быть изготовлены блокирующие устройства, которые не позволят механически, включенный высоковольтный аппарат, выкатить из ячейки КРУ.

Масляные выключатели, установленные в ячейках должны быть оснащены системами защиты. Таким образом, он работает в автоматическом режиме. Его работа и назначение схожи с обычным низковольтным автоматическим выключателем. При подаче отключающего сигнала или нажатия на механическую кнопку происходит сбивание устройства с защёлки и за счёт пружин, электрическая цепь разрывается, и он переходит в отключенное состояние. Отключающие сигналы,которые управляют выключателем, приходят от релейной защиты и автоматики.

Основные типы масляных выключателей

Знакомство с коэффициентом спроса и использования

Конструкция масляных выключателей выполняется двух основных типов:

  1. Баковые. Обладают большим объёмом масла. Оснащены одним большим баком сразу для трёх контактов трёхфазного напряжения;
  2. Горшковые (маломасляные). С меньшим объёмом масла, но и с дополнительной системой дугогашения, и тремя раздельными баками. В них на каждой фазе присутствует отдельный металлический цилиндр, заполненный маслом, в каком и происходит разрыв контактов и подавление электрической дуги.

Выключатели масляные баковые

Чаще всего они рассчитаны на сравнительно небольшие токи отключения. Производятся они однобаковыми конструкциями (три полюса находятся в одном баке) при рабочем напряжении до 20 кВ. а при на напряжение выше 35кВ — трехбаковыми (каждая из фаз расположена отдельном баке) с персональными или групповыми приводами включения. Выключатели баковые снабжаются электромагнитными или воздушными пневмоприводами. Есть возможность работы с повторным автоматическим включением (АПВ).

Масляные баковые выключатели, выпускаемые на напряжение больше 35кВ, имеют в распоряжении встроенные вовнутрь трансформаторы тока, для цепей измерения и защиты. Они насажены и закреплены на внутренний участок проходного изолятора и закрыты крышкой. Таким образом, токопроводящий стержень служит как первичная обмотка. Баковые выключатели на рабочее напряжение 110 кВ и выше иногда оборудованы ёмкостными трансформаторами напряжения.

Маломасляные выключатели

По сравнению с баковыми здесь масло служит исключительно как дугогасящая среда, а изолирование токоведущих деталей и дугогасительного аппарата касательно замыкания на землю осуществляется через твердый изоляционный материал (керамику, текстолит, и различные эпоксидные смолы). Это масляный выключатель ВМП или ВМГ типа.

Они обладают кардинально меньшими габаритами, массой, а также значительно меньшей взрывоопасностью и пожароопасностью. Присутствие в этих высоковольтных устройствах встроенных емкостных трансформаторов напряжения и трансформаторов тока, существенно усложняет конструктивное устройство выключателей и повышает их габаритные размеры.

Масляные выключатели по своей конструкции могут выпускаться заводом изготовителем двух видов движения контактной группы:

  1. дугогасительные камеры снизу (движение подвижного контакта выполняется сверху вниз);
  2. дугогасительные камеры сверху (перемещение подвижного контакта происходит наоборот снизу вверх). Этот вид более перспективен в отношении улучшения отключающей возможности.

выключатель может быть оборудован встроенным внутрь механизмом защиты и управления. Это такие реле, как:

  1. максимального тока моментального действия
  2. выдержки времени
  3. реле минимального напряжения (для защиты электрооборудования от работы на не номинальном напряжении)
  4. электромагниты отключения,
  5. вспомогательные блок-контакты.

Увеличение номинального рабочего тока тут выполняется за счёт механизма искусственного обдува как подводящих шин, так и контактной системы. В последнее время начало применяться водяное охлаждение, этих нагревающихся от прохождения тока элементов.

Выключатель маломасляный для наружной установки состоит из трех основных ключевых частей:

  • дугогасительное устройство, которое помещено в фарфоровую оболочку;
  • фарфоровые опорные колонки;
  • основания, то есть рамы.

Изоляционный цилиндр, охватывает дугогасительное устройство чем и выполняет защитную функцию. его защитная цель — это фарфоровая оболочка, чтобы во время большого давления, которые возникают в момент отключения масляника, она попросту не разорвалась.

Почему возникает электрическая дуга

Всё очень просто, мы рассматривали в статье об электрическом поле, а также в статье о распределении зарядов в проводнике, что если любое проводящее тело (стальной гвоздь, например) внести в электрическое поле — на его поверхности начнут скапливаться заряды. При том, чем меньше радиус изгиба поверхности, тем их больше скапливается. Говоря простым языком — заряды скапливаются на острие гвоздя.

Между нашими электродами воздух — это газ. Под действием электрического поля происходит его ионизация. В результате всего этого возникают условия для образования электрической дуги.

Напряжение, при котором возникает дуга, зависит от конкретной среды и её состояния: давления, температуры и прочих факторов.

Интересно: по одной из версий это явление так называется из-за её формы. Дело в том, что в процессе горения разряда воздух или другой окружающий её газ разогревается и поднимается вверх, в результате чего происходит искажение прямолинейной формы и мы видим дугу или арку.

Читать еще:  Розетки выключатели legrand серия valena

Для зажигания дуги нужно либо преодолеть напряжение пробоя среды между электродами, либо разорвать электрическую цепь. Если в цепи есть большая индуктивность, то, согласно законам коммутации, ток в ней не может прерваться мгновенно, он будет протекать и далее. В связи с этим будет возрастать напряжение между разъединенными контактами, а дуга будет гореть пока не исчезнет напряжение и не рассеется энергия, накопленная в магнитном поле катушки индуктивности.

Рассмотрим условия зажигания и горения:

Между электродами должен быть воздух или другой газ. Для преодоления напряжения пробоя среды потребуется высокое напряжение в десятки тысяч вольт – это зависит от расстояния между электродами и других факторов. Для поддержания горения дуги достаточно 50-60 Вольт и тока в 10 и больше Ампер. Конкретные величины зависят от окружающей среды, формы электродов и расстояния между ними.

Способы гашения электрической дуги

При разрыве электрической цепи, находящейся под током, между контактами возникает дуговой разряд, представляющий собой поток заряженных частиц — электронов и ионов, перемещающихся с большой скоростью между контактами. Высокая температура дуги (около 10 000° С в стволе дуги и до 2000-3000° С на ее поверхности) может привести к плавлению металлов и разрушению контактов, а ионизация окружающей среды — к пробою и перекрытию изоляции. Поэтому необходимо быстро прервать ток, который после размыкания контактов идет в цепи через электрическую дугу.

В тяговых аппаратах применяют следующие способы гашения дуги: механическое, роговое и электромагнитное.

Механическое гашение электрической дуги осуществляется удлинением ее посредством увеличения расстояния между контактами. Этот способ нашел применение в аппаратах с ручным приводом, например в выключателях управления, контроллерах управления, а также реле и др. Недостатком этого способа является малая скорость гашения дуги, большая длина дуги, повышенное подгорание и оплавление контактов.

Роговое гашение электрической дуги происходит при ее удлинении под действием силы воздушной тяги, появляющейся в результате поднимания нагретого дугой воздуха вверх и электродинамических усилий между элементами дуги и рогами, направленных также снизу вверх. Под действием этих сил электрическая дуга быстро перемещается кверху, увеличиваясь по длине, и разрывается. Роговое гашение электрической дуги используют в роговых разрядниках и в дугогасящих устройствах тяговой электроаппаратуры.

Электромагнитное гашение дуги вызывается взаимодействием магнитного потока, создаваемого специальной дугогасительной катушкой, и тока электрической дуги.

При конструировании дугогасительных устройств обычно одновременно принимают несколько способов гашения дуги. Дугогасительное устройство контактора с электромагнитным (основным) и роговым (вспомогательным) гашением (рис. 32) состоит из катушки 5, камеры 1 с полюсными наконечниками 2 и рогов Зкб. Дугогасительную катушку выполняют из шинной меди, намотанной на ребро, и укрепляют ее на сердечнике 4. В аппаратах, осуществляющих коммутацию цепей со сравнительно небольшим током, катушку наматывают из изолированного медного провода круглого сечения. Дугогасительную катушку устанавливают непосредственно за верхним дугогасительным рогом и включают последовательно с контактами. Дугогасительную камеру выполняют из асбоцементных листов, пропитанных льняным маслом для улучшения изоляционных свойств, или из специальной дугостойкой керамики. Камеру закрепляют в полюсных наконечниках из листовой стали. Полюсные наконечники, соединяясь с сердечником дугогасительной катушки, образуют магнитопровод, благодаря которому сокращается рассеивание магнитного поля и магнитные потоки сосредоточиваются в дугогасящем пространстве камеры.

В электрической цепи аппарата ток идет в следующем направлении: от провода I, через дугогасительную катушку, неподвижный 7 и подвижный 8 контакты к проводу //. При данном направлении тока в дугогасительной катушке (против часовой стрелки) направление магнитного поля внутри камеры указано стрелкой

(см. рис. 32). Одновременно вокруг дуги образуется магнитное поле, направленное против часовой стрелки. Магнитное поле дуги, взаимодействуя с магнитным полем дугогасительной катушки, создает силу заставляющую дугу перемещаться внутрь камеры. Направление вилы В определяется по правилу левой руки. Дуга, перемещаясь по рогам внутрь дугогасительной камеры, все более удлиняется, охлаждается о стенки камеры, сопротивление ее резко возрастает и дуга гаснет.

Изменение направления тока в электрической цепи приводит к изменению направления линий магнитной индукции вокруг электрической дуги. Одновременно изменяется направление тока в дугогасительной катушке, последовательно соединенной с цепью, а это вызывает изменение направления магнитных линий поля гашения. Таким образом, направление выдувания электрической дуги остается прежним — внутрь камеры.

Сила взаимодействия между магнитным потоком дугогасящего устройства при однородном поле гашения, перпендикулярно направленном к электрической дуге (при а=90°),

^ = ?/дЛ (12)

где /д — длина дуги, см;

В — магнитная индукция, Тл; 1 — отключаемый ток, А,

Влияние электрической дуги на электрооборудование

В ряде устройств явление электрической дуги является вредным. Это в первую очередь контактные коммутационные устройства, используемые в электроснабжении и электроприводе: высоковольтные выключатели, автоматические выключатели, контакторы, секционные изоляторы на контактной сети электрифицированных железных дорог и городского электротранспорта. При отключении нагрузок вышеуказанными аппаратами между размыкающимися контактами возникает дуга.

Механизм возникновения дуги

  • Уменьшение контактного давления — количество контактных точек уменьшается, растёт сопротивление в контактном узле;
  • Начало расхождения контактов — образование «мостиков» из расплавленного металла контактов (в местах последних контактных точек);
  • Разрыв и испарение «мостиков» из расплавленного металла;
  • Образование электрической дуги в парах металла (что способствует большей ионизации контактного промежутка и трудности при гашении дуги);
  • Устойчивое горение дуги с быстрым выгоранием контактов.

Для минимального повреждения контактов необходимо погасить дугу в минимальное время, прилагая все усилия по недопущению нахождения дуги на одном месте (при движении дуги теплота, выделяющаяся в ней будет равномерно распределяться по телу контакта).

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector