Spkb-optics.ru

СПКБ Оптик
12 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Силовая цепь главного выключателя

Устройство, схема и подключение промежуточного реле

Здравствуйте, уважаемые читатели сайта sesaga.ru. Промежуточные электромагнитные реле применяются во многих электронных и электрических схемах и предназначены для коммутации электрических цепей. Они используются для усиления и преобразования электрических сигналов; запоминания информации и программирования; распределения электрической энергии и управления работой отдельных элементов, устройств и блоков аппаратуры; сопряжения элементов и устройств радиоэлектронной аппаратуры, работающих на различных уровнях напряжений и принципах действия; в схемах сигнализации, автоматики, защиты и т.п.

Промежуточное электромагнитное реле представляет собой электромеханическое устройство, которое может коммутировать электрические цепи, а также управлять другим электрическим устройством. Электромагнитные реле делятся на реле постоянного и переменного тока.

Работа электромагнитного реле основана на взаимодействии магнитного потока обмотки и подвижного стального якоря, который намагничивается этим потоком. На рисунке показан внешний вид промежуточного реле типа РП-21.

Тиристор – краткий обзор полупроводника

Включение полупроводника в открытое состояние возможно путём подачи импульса пускового тока небольшой величины на управляющий электрод «У». Когда тиристор пропускает ток нагрузки в прямом направлении, электрод анода A является положительным по отношению к электроду катода «K», с точки зрения регенеративной фиксации.

Как правило, триггерный импульс для электрода У должен иметь длительность в несколько микросекунд. Однако чем длиннее импульс, тем быстрее происходит внутренний лавинный пробой. Также увеличивается время открывания перехода. Но максимальный ток затвора превышать не допускается.

После переключения и полной проводки, падение напряжения на участке анод- катод держится постоянным на уровне около 1 вольта, при всех значениях анодного тока от нуля до номинального значения. Тем не менее, следует помнить: как только полупроводник начинает проводить, этот процесс продолжается даже при отсутствии управляющего сигнала «У».

Продолжается такое состояние до момента, когда ток анода уменьшится до величины меньше допустимо минимальной. Лишь на этом уровне и ниже происходит автоматическая блокировка перехода. Иначе работают лишь новые тиристоры структуры «MCT».

Инновационная разработка в группе тиристоров. Управляемая структура MCT (MOSFET Controled thyristor): 1 — управление 1; 2 — анод; 3 — управление 2; 4 — катод; 5 — подложка металл; OFF-FET — канал типа n-канал; ON-FET — канал типа p-канал

Этот фактор показывает, что в отличие от биполярных транзисторов и полевых транзисторов, тиристоры, по сути, невозможно использовать для усиления или контролируемого переключения. Таким образом, напрашивается логичный вывод: тиристоры как полупроводниковые приборы специально разработаны для использования в составе схем коммутации высокой мощности.

Эти полупроводники могут работать только в режиме переключения, где они действуют как открытый или закрытый коммутатор. Как только этот коммутатор срабатывает, он остаётся в состоянии проводника. Поэтому в цепях постоянного напряжения и некоторых сильно индуктивных цепях переменного напряжения, значение тока необходимо искусственно уменьшать при помощи отдельного переключателя или схемы отключения.

Нереверсивная схема управления асинхронного двигателя.

В случае, если одна из электрифицированных задвижек окажется неисправной, промежуточное реле PIT разрывает цепи автоматического управления насосными агрегатами гидроэлеваторов. Такой пускатель состоит из двух простых пускателей, подвижные части которых между собой связаны механически с помощью устройства в виде коромысла.

При включённом трёхполюсном, выключателе Q1, выполненном в виде рубильника, нажатие пусковой кнопки S2 приводит к присоединению катушки линейного контактора K1 к источнику питания и включению главными замыкающими контактами K1. Одной из преимуществ использования асинхронных двигателей с короткозамкнутым ротором является простота их включения в сеть. Простейшая схема управления электродвигателем может иметь только неавтоматический выключательQи предохранителиF или автоматический выключатель.

Схема обеспечивает прямой пуск и реверс двигателя, а также торможение противовключением при ручном неавтоматическом управлении. В приводах, где применяются двигатели с короткозамкнутым ротором, частоту вращения электродвигателя изменяют путем изменения числа пар полюсов. Мощность электродвигателя 29,5 кВт, пуск автоматизирован.

По истечении некоторого времени контакты К размыкаются и замыкаются контакты КУ. Начинается разгон через ограничивающие резисторы R1—R4.

Основным элементом этой схемы является реверсивный магнитный пускатель, который включает в себя два линейных контактора КМ1 и КМ2 и два тепловых реле защиты КК рис. Наиболее часто в качестве привода в станках и установках применяются трехфазные асинхронные двигатели с короткозамкнутым ротором.

Типовые схемы управления электроприводами с асинхронными двигателями


Это приводит к включению контактора КМ2 и подаче на АД напряжения источника питания с другим порядком чередования фаз. Происходит разбег двигателя по его естественной характеристике. Он срабатывает и своими главными контактами К подключает двигатель на трехфазное питание Л1, Л2, Л3. Принципиальная схема силовой части нереверсивного электропривода по системе ТП-Д Рис.

Электрические блокировки для предотвращения одновременного включения двух контакторов осуществляются с помощью размыкающих контактов КM1 и КM2 рисунок 6, б. В результате блокировочными связями световая сигнализация обеспечивает контроль над направлением вращения двигателя при реверсе. Одновременно контактор своим замыкающим вспомогательным контактом осуществляет самоблокировку, а размыканием другого вспомогательного контакта отключает катушки. При этом срабатывает контактор малой скорости, который обеспечивает главными замыкающими контактами K1. Нажатие остановочной кнопки S1 размыкает цепь катушки линейного контактора K1 и его главные контакты K1.

Читать еще:  Инерционный выключатель топлива ifs

Так как привод конвейеров производится электродвигателями, то более подходящими для данного случая будут электрические или механические ЛЭ. После разбега двигателя до низкой частоты вращения может быть осуществлен его разгон до высокой частоты вращения. Включение КМ1 одновременно приводит к срабатыванию контактора КМ4, который своим контактом шунтирует ненужный при пуске резистор противовключения Rд2, а также разрывает цепь катушки реле времени КТ. При использовании автотрансформаторов см. При этом речь может идти о потоках энергии различного вида: электрической, механической, тепловой и других.
Как подключить магнитный пускатель. Схема подключения.

Принцип работы ячеек КСО

Чтобы понять принцип работы ячеек КСО обратимся к истории ее создания. С развитием в СССР в 60-е годы электроэнергетики появилась необходимость унификации и снижения стоимости большого количества распределительных устройств напряжением 6 и 10 кВ. Для повсеместно распространяющихся комплектных трансформаторных подстанций требовались малогабаритные унифицированные ячейки (камеры), выполняющие элементарные функции в закрытых распределительных устройствах. Такими решениями стали камеры с двухсторонним (КРУ) и односторонним обслуживанием (КСО).

Принцип работы КСО

Внутри ячеек располагается оборудование и устройства для приема и распределения электроэнергии. Производители предлагают ряд типовых схем ее главных (первичных) и вспомогательных (вторичных) внутренних цепей. Чаще всего это: подключение воздушной линии или кабельного ввода, заземление сборных шин, шинный мост, кабельные сборки, подключение трансформатора собственных нужд и другие. Возможно изготовление ячеек по индивидуальным схемам Заказчика.

Состав ячейки

Ячейки представляют собой сварную металлоконструкцию (камеру). Внутри нее располагается оборудование главных цепей. Состав этого оборудования и схема его соединения определяется назначением ячейки.

В корпусе ячейки может быть установлено следующее оборудование: высоковольтные выключатели (в том числе выключатели нагрузки), разъединители, измерительные и силовые трансформаторы, ограничители перенапряжения, предохранители, указатели напряжения и другое оборудование различных производителей.

Также внутри ячейки устанавливается ящик с оборудованием вторичных цепей: механические или микропроцессорные реле, автоматами, приборами учета и измерения электроэнергии и т.п.

На фасад камеры вынесены органы управления коммутационными аппаратами и аппаратура вторичных цепей.

Для безопасной эксплуатации ячейки предусмотрена система механических и электрических блокировок от неправильных оперативных действий персонала. Имеются сетчатые ограждения открытых токоведущих частей ячейки, разделительные перегородки и другие защитные элементы.

Сборные алюминиевые шины располагаются в верхней части камер, там же имеется короб с магистралями вспомогательных цепей и ряды зажимов. Зона кабельных подключений располагается внизу камер. Доступ в камеру осуществляется через дверь, имеющей замок и смотровое окно, предусмотрено освещение внутреннего оборудования ячейки.

Возможно как одно-, так и двухрядное размещение камер. Для соединения рядов используются шинные мосты с разъединителями.

Изоляция

В качестве естественного изолятора между токоведущими поверхностями и заземленными частями камер используется воздушный промежуток. Расстояния между элементами ячейки регламентируются ПУЭ. Такое решение несколько увеличивает габариты ячейки, но позволяет снизить ее стоимость.

Таким образом, принцип работы ячеек КСО определяется их назначением в схеме распределительного устройства, а значит схемами первичных и вторичных цепей.

Контакты низковольтных аппаратов

Содержание статьи:

  • виды контактов;
  • переходное сопротивление, которое определяет качество сцепления;
  • материалы для контактов;
  • рекомендации по эксплуатации размыкающихся контактов;

  • чем обусловлено применение серебра:
    • низкая скорость окисления под воздействием атмосферного кислорода и озона;
    • что даёт низкое переходное сопротивление, которое незначительно изменяется во времени;
    • из-за низкой температуры плавления применяют металлокерамические контакты с включением Ag.

Контакты для низковольтной аппаратуры (НВА)

Под низковольтными аппаратами понимаются автоматические выключатели, пускатели и контакторы, а также рубильники (выключатели-разъединители).

Контактом или контактным соединением называют соединение двух токопроводящих элементов, которое производят при помощи сжатия. Зачастую, пару контактов составляют – подвижный и неподвижный (или малоподвижный) контакт.

Контактные соединения разделяют на следующие группы:

  • неразмыкающиеся контактные соединения (при нормальной работе не разъединяются, только во время ремонтных или профилактических мероприятий – болтовые соединения);
  • размыкающиеся контактные соединения (контакты низковольтных аппаратов, коммутирующие цепь);
  • скользящие контактные соединения (контакты перемещаются друг относительно друга без потери сцепления, например, шарнирное присоединение ножей рубильника с неподвижными контактами).

Виды контактов, встречающиеся в автоматических выключателях и контакторах:

  • главные контакты (или главная контактная группа);
  • дугогасительные контакты (контакты, предназначенные для гашения электрической дуги);
  • вспомогательные контакты (или дополнительные контакты, или блок-контакты).

Практически во всей, массово выпускаемой, низковольтной аппаратуре главные контакты играют роль дугогасительных.

Раздельные главные и дугогасительные контакты имеются у автоматического выключателя Электрон и контактора серии КТ.
Вспомогательные контакты (поставляют как дополнительную заказную опцию) служат для сигнализации положения главных контактов.

Переходное сопротивление контактов

Одним из наиболее важных параметров для оценки качества контактного соединения является его переходное сопротивление. Снижение переходного сопротивления, приводит к снижению выделяемого тепла при протекание тока. Проводимый ток в основном ограничивается заданной максимальной температурой. Следовательно, чем ниже переходное сопротивление, тем обеспечен лучший контакт.

На практике определяют значение падения напряжения на контактном соединении, через которое высчитывают переходное сопротивление: Rп = ∆Un / In.

Читать еще:  Выключатель кулачковый 9cnb022531r4090 арт а9304 тип p

Факторы, влияющие на переходное сопротивление следующие:

  • контактное сжатие;
  • форма контактов в месте соприкосновения;
  • окисление контактов;
  • вибрационные нагрузки.

Контактное сжатие.
Самая тщательная обработка поверхности контактов всё равно оставит микронеровности. Тогда металлический контакт возникает в одной либо нескольких точках. Чтобы обеспечить более полное прилегание поверхностей контактов, создают сжимающую силу, которая сдавливает микроскопические бугорки.

Форма контактов в месте соприкосновения.
Кинематика низковольтного аппарата, а также выполняемые им функции определяют поверхности контактного соединения. По характеру контакта выделяют три вида контактных соединений:

  • точечный контакт рис. а (ток проходит сквозь точку);
  • линейный контакт рис. б (ток протекает по совокупности точек – линию);
  • плоскостной либо многоточечный контакт рис. в (ток течёт сквозь несколько точек).

На рисунках показаны виды контактов:
1 – остриё + плоскость; 2 – остриё + сфера; 3 – сфера + плоскость; 4 – две сферы;
5 – призма + плоскость; 6 – цилиндр + плоскость; 7 – два цилиндра;
8 – две плоскости.
Точечный контакт характерен для блок-контактов, где не столь важно качество сцепления и мал проводимый ток (не выше 10 А), усилие сжатия до 5 Н.

Линейный контакт характерен для большинства главных контактов автоматических выключателей, пускателей, контакторов и рубильников, сжимающее усилие до 500 Н.

Многоточечный контакт характерен для неразъёмных болтовых соединений, сжимающее усилие до 5 000 Н. Например, место присоединения кабеля и контактного вывода аппарата либо электротехнической шины и вывода.

Окисление контактных поверхностей.
Все металлы под воздействием атмосферного кислорода и озона окисляются. Наличие оксидной плёнки может существенно повлиять на переходное сопротивление, которое может возрасти в сотни раз.

Приведём примерное изменение переходного сопротивления при температуре +35 °С (данные союзной лаборатории Смурова). Приведенный коэффициент α прямо пропорционален переходному сопротивлению.

Материал контактовПродолжительность окисления, сутокКоэффициент αВозрастание переходного сопротивления, раз
до окисленияпосле окисления
медь (Cu)21,10∙10 -4180∙10 -4164
олово (Sn)121,56∙10 -4110∙10 -477
серебро (Ag)1000,50∙10 -411∙10 -422

Как видно, серебро является наиболее предпочтительным материалом для контактов, эксплуатирующихся в продолжительном режиме. Когда выбраны медные контакты (зачастую, из-за относительно низкой стоимости), применяют регулярное смыкание и размыкание контактов для механического стирания оксидной плёнки либо скользящее контактное соединение.

Вибрация.
Вибрационные нагрузки возникают повсеместно, где монтируют низковольтную аппаратуру. Например, автоматические выключатели устанавливают в распределительные щиты, которые монтируют в промышленных цехах; пускатели устанавливают поблизости с управляемыми асинхронными электрическими двигателями.

Наиболее опасны вибрации, которые направлены по той же линии, что и сжимающее усилие в контактах; а также вибрации, которые могут привести к резонансу крепёжных элементов и контактов. Если сила от вибрации превысит значение сжимающей силы, то произойдёт кратковременное расцепление. При больших токах это грозит свариванием контактов, при малых токах – их обгоранию.

Материалы, применяемые для контактов

Медные контакты
Наиболее распространённым материалом для контактов является медь. Ключевые факторы: высокая электропроводность, хорошая твёрдость, тугоплавкость, а также высокая коммутационная износостойкость. Главным недостаток – быстрое образование оксидной плёнки со значительным возрастанием переходного сопротивления.

Серебряные контакты
Лучший материал для коммутационных аппаратов, работающих в продолжительном режиме. Теплопроводность и электрическая проводимость наилучшая среди металлов. Окисление очень медленное, окислы имеют достаточную проводимость. Отрицательные факторы – плохая коммутационная износостойкость (быстрое выгорание или разбрызгивание серебра), высокая цена.

Вольфрамовые контакты
Механическая прочность вольфрама стабильна в широком диапазоне температур, а также значительно превышает ту же характеристику других контактных материалов. Вольфрам устойчив к высоким температурам электрической дуги (тугоплавкий материал). Отрицательные стороны – подвержен окислению, обладает высокой ценой, переходное сопротивление в разы больше серебряного или медного электрического сопротивления. Основное применение – контакторы с низким амперажём, с высокой частотой включений и отключений.

Графитовые контакты
Графит имеет высокое удельное сопротивление и обладает самой высокой температурой эксплуатации. Графитовые контакты применяют в автоматических регуляторах напряжения и отличают тем, что не свариваются и могут включать большие токи. Износ очень быстрый, что приводит к образованию копоти.

Металлокерамические контакты
Так как у многих массовых коммутационных аппаратов главные контакты совмещены с дугогасительными, то и накладываются противоречивые требования – малое переходное сопротивление, стойкость к высоким температурам электрической дуги, малая подверженность коррозии. Ни один из чистых металлов либо сплавов не проходит проверки. Поэтому нашли выход – гетерогенные сплавы, которые сохраняют свойства отдельно взятых компонентов.

Наиболее простыми двухкомпонентными металлокерамическими контактами работают составы металла с высокой электрической проводимостью в сочетании с маленькой температурой плавления (медь либо серебро) и тугоплавкого металла (молибден или вольфрам). В итоге получается тугоплавкий скелет с вставками из металла с высокой электрической проводимостью. При воздействии дуги, серебро плавиться, но не разбрызгивается, а удерживается в металлокерамике силами смачивания.

Металлы измельчают до получения порошка с частицами порядка 40 мк, затем смешивают, прессуют и запекают при температурах 800-900 °С.
Наибольшее распространение получили сочетания: серебро + окись кадмия (второй материал может заменяться: вольфрамом, молибденом, никелем, графитом), а также медь + графит.

Читать еще:  Выключатели подводные фонари своими руками

Для обеспечения хорошей электропроводности в месте соединения металлокерамической пластины с контактной деталью, внутреннюю сторону покрывают подслоем серебра (до 1 мм).

Размыкающиеся контакты

По условиям работы контакты низковольтных аппаратов распределяют по 3 группам:

  • контакты, включающие и отключающие электрические цепи без тока (например, контакты разъединителей). Износ происходит из-за механических факторов, обеспечивают протекание номинального электрического тока либо кратковременное протекание сверхтока;
  • контакты, которые включают и отключают ток при очень малых значениях напряжения (до нескольких вольт). Например, контакты контакторов ускорения. При работе подвержены не только механическому износу, но и незначительному электрическому износу (возникновение искры);
  • контакты, которые коммутируют ток при номинальном напряжении (контакты автоматических выключателей, пускателей и контакторов, рубильников).

Остановимся на последней группе.
Основная задача таких контактов обеспечить беспрепятственное протекание номинального тока и сверхтока (короткие замыкания, перегрузки). Изнашиваются контактные группы в основном из-за выгорания и разбрызгивания материала при гашение электрической дуги, механические факторы играют второстепенную роль. Повторное включение допустимо после остывания контактов.

Интенсивность исчезновения контактного материала зависит от силы отключаемого тока, применяемого материала, способа гашения дуги. При включение, некоторое время контакты вибрируют, что тоже может привести к износу.

Наиболее тяжёлые условия у тех контактов, которые смыкаются во время протекания аварийных токов. Проявляется сильный отброс контактов друг от друга из-за электродинамических сил, рождается мощная электрическая дуга. Близкие условия у контакторов, запускающих мощные электрические двигатели, пусковые токи могут отличаться от номинальных на порядок.

Важными факторами, за которыми нужно следить во время эксплуатации являются:

  • начальное и конечное сжатие (в основном обеспечивается пружиной, которую следует регулярно менять);
  • провал контактов (расстояние между точкой сцепления и положением, которое занимает подвижный контакт при отсутствие неподвижного);
  • состояние контактных поверхностей;
  • наличие проскальзывания или переката, если они гарантируются кинематической схемой.

Посеребренные и металлокерамические контакты не следует зачищать напильником. Зачищают лишь заметные бугорки и остывшие брызги металла. После каждого аварийного отключения следует протереть поверхности ветошью смоченной в бензине для устранения гари. Зачастую, приработанные контакты проводят ток лучше, чем новые. Не следует употреблять какую-либо смазку, так как она сгорает и оставляет копоть на контактах.

Развёрнутая информация по уходу за контактами, измерению контролируемых величин находится в книге, указанной ниже (практические рекомендации со страницы 35).

Список использованной литературы
Образцов В. А. Уход за контактами низковольтных аппаратов. – Ленинград: ГосЭнергоИздат, 1959 – 61 с.
Книга в свободном доступе на странице прайс-лист.

Управляющая часть

Рассмотрим работу управляющей части схемы подключения УПП.

Важный элемент здесь – входные клеммы цепи запуска и останова. Существует два вида схемы управления – 2-проводная и 3-проводная. Вид управления выбирается пользователем через панель управления.

Схема управления через два провода

На схеме показан ключ с фиксацией (переключатель) К. При замыкании его контактов УПП запускается, при размыкании начинается процесс плавного останова двигателя.

Контакт «Мгновенный стоп» в нормальном состоянии должен быть замкнут. Им показана аварийная цепь, например, кнопка «Аварийный останов», либо концевые выключатели открытия защитных ограждений. Как только эта цепь рвется, устройство плавного пуска аварийно останавливает двигатель.

Схема управления через три провода

В данном случае используются 3 провода, которые подключаются к контактам 8, 9, 10. При кратковременном нажатии кнопки «Пуск» (без фиксации) софтстартер начинает процесс разгона электродвигателя, при нажатии кнопки «Стоп» (также без фиксации) начинается процесс останова.

Запуск УПП также может быть произведен посредством промежуточного реле. Это целесообразно для исключения ложных срабатываний в случае длинных проводов управления или сложной помеховой обстановки.

Схема двухпроводного управления с использованием промежуточного реле КА показана ниже.

Обозначения на схеме: KS – переключатель «Пуск/Стоп» с фиксацией, КА – катушка и контакт реле. Нормально замкнутые контакты К – цепь мгновенного стопа, о которой говорилось выше.

Для удобства оператора на посту управления могут быть установлены две кнопки – «Пуск» и «Стоп». При размещении поста на значительном удалении от устройства плавного пуска может быть использовано промежуточное реле, как это показано на схеме ниже:

На рисунке представлена классическая схема включения и выключения реле с самоподхватом. Здесь также используется двухпроводная схема через контакты реле КА.

В устройстве плавного пуска Prostar PRS2 имеются и выходные клеммы (см. общую схему подключения):

  • 01-02 – выход на байпас для управления шунтирующим контактором (было рассмотрено выше).
  • 03-04 – программируемый выход. Включается при событии, которое может быть запрограмировано при настройке устройства плавного пуска.
  • 05-06 – выход ошибки. Срабатывает при любой аварии УПП.
  • 11-12 – аналоговый токовый выход для контроля тока электродвигателя.

У софтстартеров других производителей могут отличаться номера клемм, значения напряжений и пр. Уточнить нюансы подключения можно в инструкции к конкретной модели УПП.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector