Трансформатор тока изоляция выключатель
Разновидности и классификация трансформаторов тока
Добро пожаловать на страницы сайта «Заметки электрика».
В прошлой статье я рассказал Вам про трансформаторы тока и их назначение.
Но в настоящее время на рынке существует большой выбор и разнообразие трансформаторов тока. И чтобы Вам было легче ориентироваться среди них, необходимо их классифицировать.
Вот сегодня мы и поговорим об их разновидностях и классификации.
Классификация ТТ по назначению
Как разделяются трансформаторы тока по назначению, я подробно описал в статье про применение и назначение трансформаторов тока.
Еще существуют лабораторные трансформаторы тока, о которых я не упомянул в вышесказанной статье. Эти лабораторные ТТ имеют высокий класс точности и имеют несколько коэффициентов трансформации.
Так выглядит лабораторный трансформатор тока УТТ-6м1, установленный на моем рабочем стенде для проверки релейной защиты. Также мы его используем для измерения тока в первичной цепи при прогрузке автоматических выключателей более 100 (А).
Сейчас я подробно на нем останавливаться не буду. Расскажу о нем в отдельной статье. Кому интересно, то можете подписываться на статьи (в правой колонке сайта) и получать уведомление на почту о выходе новой статьи на сайте.
Классификация трансформаторов тока по месту установки
По месту установки трансформаторов тока их можно классифицировать следующим образом:
Наружные трансформаторы тока могут устанавливаться на открытом воздухе, т.е. это может быть открытое распределительное устройство (ОРУ). Категория размещения электрооборудования в данном случае является I и регламентируется ГОСТ 15150-69.
На фотографии ниже показаны трансформаторы тока наружной установки, установленные на стороне 110 (кВ).
Внутренние трансформаторы тока могут быть установлены только в закрытых помещениях. Это может быть закрытое распределительное устройство (ЗРУ), так и комплектное распределительное устройство (КРУ), а также все помещения закрытого типа, регламентируемого ГОСТом 15150-69.
Пример внутренней установки трансформаторов тока смотрите на фотографиях ниже.
Вот установка высоковольтного трансформатора тока ТПШЛ-10 в ЗРУ-110 (кВ). Этот трансформатор стоит в цепи короткозамыкателя.
На фотографии ниже показан пример установки высоковольтных трансформаторов тока ТПЛ-10 в кабельном отсеке ячейки КРУ напряжением 10 (кВ).
Это трансформаторы ТПФМ-10 на одной из распределительных подстанций 10 (кВ).
А это несколько примеров низковольтных трансформаторов тока внутренней установки: КЛ-0,66 и ТТИ-А.
Встроенные трансформаторы тока встраиваются в силовые трансформаторы, выключатели, генераторы и другие электрические машины. В качестве внутренней среды электрооборудования применяется трансформаторное масло или газ.
Пример встроенных ТТ Вы можете посмотреть на фотографии ниже. Эти трансформаторы тока ТВТ встроены в бак силового трансформатора 110/10 (кВ) мощностью 40 (МВА). Они установлены на стороне 110 (кВ) и основная цель их установки — это осуществление дифференциальной защиты трансформатора.
Переносные ТТ применяются для лабораторных электрических измерений и испытаний электрооборудования. Примером переносного трансформатора тока является лабораторный трансформатор тока, о котором я говорил в самом начале статьи.
Специальные ТТ предназначаются и устанавливаются в специальных электроустановках шахт, морских судов, электровозов. Сюда можно отнести трансформаторы тока, установленные в силовой цепи питания электрических печей высокой частоты. Мне лично не приходилось их видеть своими глазами.
Разделение ТТ по способу установки
По способу установки трансформаторов тока их можно классифицировать следующим образом:
Проходные ТТ применяют тогда, когда необходимо их установить в проеме стены или металлической поверхности (основания). Чаще всего они применяются в качестве вводов, а также на старых подстанциях с бетонным распределительным устройством (БРУ), по особенностям конструкций бетонных перегородок. Проходные трансформаторы тока играют роль проходного изолятора.
Как видно по фотографиям, проходные трансформаторы тока легко узнать по особенностям расположения выводов первичной обмотки. Один вывод всегда расположен вверху, другой — внизу.
Опорные трансформаторы тока применяют и устанавливают на ровную опорную плоскость.
Отличительной особенностью опорных трансформаторов тока является то, что вывода первичной обмотки располагаются либо все вверху, либо один вывод слева, другой — справа.
Классификация трансформаторов тока по коэффициенту трансформации
В чем же заключается классификация трансформаторов тока по коэффициенту трансформации?
Трансформаторы тока бывают:
Трансформаторы тока с одним коэффициентом трансформации имеют на протяжении всего срока их службы и эксплуатации один постоянный коэффициент, который никаким образом изменить нельзя. Они и нашли самое широкое применение.
У трансформаторов тока с несколькими коэффициентами трансформации можно изменить этот коэффициент путем несложных манипуляций. Например, изменить число витков обмоток, как первичной, так и вторичной.
Опять же в пример Вам привожу свой лабораторный трансформатор тока УТТ-6м1.
Классификация трансформаторов тока по первичной обмотке
По конструкции первичной обмотки, трансформаторы тока можно разделить следующим образом:
Об этом мы поговорим с Вами в отдельной статье про одновитковые и многовитковые трансформаторы тока, т.к. материала по этой теме очень много.
Разделение ТТ по типу изоляции
Суть этого разделения заключается в способах изоляции обмоток трансформатора тока (первичной и вторичной). Существует следующие способы изоляции обмоток между собой:
- твердая изоляция
- вязкая изоляция
- смешанная изоляция
- газовая изоляция
Под твердой изоляцией подразумевается использование фарфора, полимерных материалов, бакелита, капрона и эпоксидной изоляции (смолы).
Вязкая изоляция состоит из компаундов различных составов.
Под смешанной изоляцией понимают бумажно-масляную изоляцию.
В качестве газовой изоляции применяется воздух или элегаз.
Классификация ТТ по методу преобразования
Классификация трансформаторов тока по методу преобразования заключается в самом принципе преобразования переменного электрического тока.
Различают следующие методы преобразования:
Классификация трансформаторов тока по классу напряжения
Ну вот мы и добрались до класса напряжения. И конечно же трансформаторы тока тоже по ним делятся. Деление происходит очень легко и просто:
Разницу по классу напряжения трансформаторов тока видно не вооруженным глазом.
Выводы
Из опыта эксплуатации и технического обслуживания трансформаторов тока на подстанциях своего предприятия скажу, что чаще всего трансформаторы тока с классом напряжения от 3-10 (кВ) выполняются проходными, реже опорными. Все они предназначены для внутренней установки и имеют один коэффициент трансформации. Также у них используется 2 вторичные обмотки, одна из которых используется для цепей измерения и учета электроэнергии, а другая — для релейной защиты.
Область применения
Элегазовый трансформатор напряжения применяется на различных электрических подстанциях. Прибор способен передавать сигнал измерительным приборам, защитным компонентам распределительных устройств. Элегазовые трансформаторы подключаются к трехфазной (промышленной) сети. Их задачей является трансформация переменного тока 50 Гц. Установка разрешается в средних и умеренно холодных климатических зонах.
Работа трансформаторов на основе изоляции из элегаза возможна практически во всех отраслях промышленной деятельности человека. Функционирование оборудования позволяет передавать обработанный сигнал измерительным приборам, охранным, защитным система. Установка применяется для обеспечения работы различных приборов учета электроэнергии.
Элегазовый трансформатор тока идеально подойдет для закрытых или подземных подстанций, функционирующих в черте города. Установки монтируют в критических с точки экологии районах. В таких зонах недопустима утечка масла. Здесь разрешается применять исключительно оборудование на элегазе.
2. Фарфоровая изоляция трансформаторов тока
До последнего времени в качестве главной изоляции трансформаторов тока на относительно низкие и средние напряжения особенно широко применялась фарфоровая изоляция.
Можно было бы отметить, что по данным ОРГРЭС трансформаторы тока на напряжение 3—10 кВ составляют 92,5% всего количества трансформаторов тока на все напряжения [Л. 15-2]. Именно для трансформаторов тока на эти напряжения и используется в основном фарфоровая изоляция.
Широко распространенным типом трансформаторов тока (особенно для промышленной энергетики) являются катушечные трансформаторы тока. Один из выпускаемых нашей промышленностью катушечных трансформаторов тока (тип ТКФ) показан на рис. 15-1.
Рис. 15-1. Катушечный трансформатор тока типа ТКФ.
1 — первичная обмотка; 2 — фарфоровой изолятор; 3 — вторичная обмотка; 4 — сердечник; 5 — шайба с вырезом.
Выгодной особенностью катушечных трансформаторов тока, обеспечивающей их дешевизну, является то обстоятельство, что намотка как первичной, так и вторичной обмотки может быть механизирована.
Электрическая прочность данной изоляционной конструкции невелика. Это обусловлено весьма сжатыми габаритами, малыми расстояниями между первичной обмоткой и внутренней поверхностью окна сердечника, а также наличием в электрическом поле узких воздушных зазоров, включенных последовательно с фарфоровой изоляцией.
Прочность промежутка между первичной обмоткой и внутренней поверхностью окна сердечника может быть рассчитана так же, как для промежутка «острие — плоскость».
Электрическую прочность воздушных зазоров между обмоткой и фарфором, а также между фарфором и боковой внутренней поверхностью окна сердечника, можно рассчитать по формуле для плоского диэлектрика.
Указанные особенности катушечных трансформаторов тока приводят к тому, что они применяются при относительно низких напряжениях (500 3000 в).
С целью увеличения электрической прочности катушечных трансформаторов тока в зазор между катушкой и внутренней поверхностью окна сердечника вкладывается П-образный изоляционный барьер.
Соединение барьера с телом фарфоровой изоляции привело к тому, что появился новый тип изоляции трансформаторов тока — фарфоровый изолятор со взаимно перпендикулярными каналами (тип ТФФ, рис. 15-2).
Дальнейшее развитие этого принципа приводит к более сложным конфигурациям фарфора, в которых первичная обмотка находится в закрытом фарфоровом канале на всем своем протяжении. Так, рис. 15-3 показывает трансформатор тока типа ТФ-10 на 10 кВ с подобной фарфоровой изоляцией сложной формы. Рис. 15-4 дает представление о фарфоровом изоляторе для трансформатора тока указанного типа.
Изоляция подобного рода удовлетворительно работает при условии исключения из электрического поля узких воздушных зазоров, которые могут вызывать раннюю ионизацию.
Рис. 15-2. Схема катушечного трансформатора тока типа ТФФ.
1 — первичная обмотка: 2 — фарфоровый изолятор; 3 — вторичная обмотка; 4 — сердечник; 5 — изоляционная прокладка.
Рис. 15-3. Трансформатор тока ΤΦ-ΐυ.
Рис. 15-4. Фарфоровый изолятор для трансформатора тока ТФ-10.
Рис. 15-5. Трансформатор тока типа ТПФ-10.
Для этой цели близко лежащие к первичной обмотке поверхности фарфора должны быть металлизированы или покрыты проводящей краской, полупроводящей глазурью и т. п. Применяется также заполнение внутренней полости изолятора графитированным песком.
Для повышения напряжения скользящих разрядов на фарфоре сделаны «козырьки», т. е. выступы с закруглениями, покрытыми проводящим слоем. Таким образом, заземленная поверхность изолятора заканчивается закруглением относительно большого радиуса, прикрытым фарфором.
Рис. 15-7. Проходной изолятор для трансформатора тока типа ТПОФ-10.
Рис. 15-6. Электрическое иоле проходного изолятора трансформатора тока типа ТПФ-10. 1 — проводящая поверхность; потенциал земли; 2 — проводящая поверхность; потенциал первичной обмотки.
Перенесение электрической нагрузки полностью на фарфор повышает требования к электрической прочности фарфора и ограничивает применение подобной изоляции напряжениями 6—10 кВ.
Следует отметить, что в силу этого она не получила массового распространения.
Другой конструктивный принцип воплощен в проходных трансформаторах тока с фарфоровой изоляцией типа ТПФ-10 на 10 кВ. Чертеж такого трансформатора тока (рис. 15-5) показывает, что здесь используются два фарфоровых проходных изолятора, через которые последовательно пропускаются витки первичной обмотки.
Поскольку трансформаторы этого типа являются предметом массового выпуска, в конструкции их максимально сокращена длина изоляторов, что дает экономию меди первичной обмотки.
Развитие скользящих разрядов на этих изоляторах предотвращается наличием фарфоровых «козырьков» (А и Б, рис. 15-6) на краях электродов. На рис. 15-6 показана примерная форма электрического поля в изоляторах ТПФ-10 и поверхности, которые не глазуруются, а покрываются проводящей графитовой краской. Наружная поверхность фарфора в средней части изолятора заземляется.
На каждом конце изолятора также имеется проводящий слой. Он электрически соединяется с проводящим слоем на внутренней поверхности проходного изолятора и с первичной обмоткой трансформатора тока (ввод Л2). Эти проходные изоляторы весьма экономичны и производство их хорошо освоено, несмотря на сложную форму фарфора.
При больших номинальных токах (400—1500 а) широко применяются так называемые одновитковые или стержневые трансформаторы тока с фарфоровой изоляцией (типа ТПОФ на 10 и 20 кВ). Проходной изолятор трансформатора тока ТПОФ-10 показан на рис. 15-7. В этих трансформаторах тока первичной обмоткой является прямолинейный стержень (или труба), проходящий внутри изолятора и образующий часть единственного первичного витка трансформатора.
Фланец такого трансформатора тока при токах свыше 600— 750 а во избежание нагрева сильным магнитным полем стержня изготовляется из немагнитного материала и закрепляется на средней части изолятора при помощи механического крепления.
Длина изолятора у одновитковых трансформаторов тока может быть различной в связи с тем, что набор сердечников у них может иметь различную высоту, зависящую от их количества (1 или 2), от класса точности и от номинального тока.
Замеры сопротивления обмоток постоянному току, и проверка состояния переключения РПН
С помощью проверки убеждаемся в наличии или отсутствии повреждений в обмотках трансформатора, выявляем проблемы с контактами в местах соединения высоковольтных вводов и обмоток и с РПН. Одновременно проверяем функциональность РПН, не вскрывая его корпус.
Особенность операции
После проведения измерений выполняем размагничивание сердечника трансформатора и проводим контрольный замер коэффициента трансформации без переключений проводов.
Как мы используем результаты
Для того чтобы выявить эти проблемы мы применяем статический замеры сопротивления обмоток в каждом последовательном переключении РПН. Сравниваем показания с эталонами. Исследование переходных процессов и оценку работы модифицированного вакуумного РПН резистивного типа выполняем с помощью динамического замеры величины сопротивления.
При сравнении результатов измерений постоянному току мы можем обнаружить возможные:
- обрыв цепи;
- вероятные точки нагрева;
- проблемы с контактами.
Без измерительных трансформаторов не обойтись, когда требуется «снять показания» в цепи с высокими токами. Но в линейке продукции EKF также представлены различные приборы, облегчающие измерения и в бытовых условиях – мультиметры и токовые клещи. Они пользуются такой же популярностью у специалистов, как и необходимые каждому электрику инструменты: отвертки, ножницы кабельные, пассатижи и бокорезы.
В линейке продукции EKF также представлен необходимый для любой квартиры электромеханический или электронный счетчик электроэнергии. Устройства в серии СКАТ отличаются компактными размерами, удобством монтажа и встроенной пломбировкой для защиты от несанкционированного доступа.
Таким образом, какие бы задачи ни стояли перед специалистом, в ассортименте EKF найдутся все необходимые устройства и инструменты – точные, надежные и безопасные.
Трансформаторы тока ТЗЛМ-1, ТЗЛМ-1-1, ТЗЛМ-1-2
Производитель | РОССИЯ и СНГ |
- Описание
- Доставка и оплата
- Гарантия и возврат
- Отзывы
Навигация по странице:
- Назначение
- Конструктивные особенности
- Комплект поставки
- Технические характеристики
- Устройство
- Эксплуатация
- Габаритные схемы
- Видеообзор
Назначение трансформаторов
Трансформаторы тока ТЗЛМ-1 предназначены для питания схем релейной защиты от замыкания на землю отдельных жил трехфазного кабеля путем трансформации возникших при этом токов нулевой последовательности и устанавливаются на кабель.
Трансформаторы предназначены для встраивания в комплектные распределительные устройства (КРУ).
Конструктивные особенности
Трансформаторы могут изготавливаться как в пластмассовом корпусе, так и в литом исполнении (для АС).
Трансформаторы ТЗЛМ-1 имеют климатическое исполнение «У», категорию размещения 2 по ГОСТ 15150 и предназначены для работы в следующих условиях:
- высота установки над уровнем моря — не более 1000 м. По согласованию с потребителем возможно изготовление трансформаторов для работы на высоте свыше 1000 м;
- верхнее значение температуры окружающего воздуха при эксплуатации, с учетом перегрева воздуха внутри КРУ, 50 °С;
- относительная влажность воздуха 100 % при 25 °С;
- нижнее рабочее значение температуры окружающего воздуха, давление воздуха — согласно нормам ГОСТ 15543.1;
- окружающая среда невзрывоопасная, не содержащая пыли, агрессивных газов и паров в концентрациях, разрушающих покрытия, металлы и изоляцию (атмосфера типа II по ГОСТ 15150);
- рабочее положение трансформаторов в пространстве – любое;
- изоляция трансформаторов в литом исполнении класса нагревостойкости В по ГОСТ 8865 и класса воспламеняемости FH (ПГ) 1 по ГОСТ 28779 и выполнена на основе эпоксидной смолы;
- изоляция трансформаторов, изготавливаемых в пластмассовом корпусе, класса нагревостойкости Y по ГОСТ 8865, выполнена из термопласта;
- трансформаторы соответствуют группе условий эксплуатации М6 по ГОСТ 17516.1;
- трансформаторы с литой эпоксидной изоляцией сейсмостойки при воздействии землетрясений интенсивностью 8 баллов по MSK-64 при уровне установки над нулевой отметкой до 70 м;
- трансформаторы, предназначенные для поставки на АС, соответствуют классу безопасности 3Н по НП-001-97 и II категории сейсмостойкости по НП-031-01;
- трансформаторы соответствуют требованиям устойчивости к электромагнитным помехам при воздействии магнитного поля промышленной частоты по ГОСТ Р 50648, установленным для группы исполнения IV по ГОСТ Р 50746;
- трансформаторы удовлетворяют нормам индустриальных радиопомех, установленным в ГОСТ Р 51318.11, класс А, группа 1.
Комплект поставки
- Трансформаторы тока ТЗЛМ-1 (модель указывается при заказе) — 1 шт.
- Этикетка — 1 экз.
- Паспорт* — 1 экз.
- Руководство по эксплуатации — 1 экз.
*На партию, поставляемую в один адрес, общее количество экземпляров РЭ может быть уменьшено, но должно быть не менее трех экземпляров на партию трансформаторов в пятьдесят штук.
Где и как используют трансформаторы тока?
Самые разные виды трансформаторов тока применяются в электронных устройствах, начиная от небольших и заканчивая приборами размером в несколько метров. Обычно их классифицируют по признакам эксплуатации.
Классификация трансформаторов тока:
- для измерений (с их помощью на измерительные устройства подается электрический ток);
- для защиты (их подключают к цепям защит);
- для лабораторных применений (такие трансформаторы тока имеют большой класс точности);
- для повторных преобразований (промежуточные).
В работе объектов используют следующие трансформаторы тока:
- для внешнего монтажа (на улице);
- для внутреннего монтажа (для закрытых установок);
- вмонтированные внутрь корпуса прибора;
- накладные ( их надевают на проходной изолятор);
- переносные (для проведения измерений в различных местах).
По значению рабочего напряжения оборудования трансформаторы тока делятся на:
- высоковольтные (обладающие напряжением свыше 1000 В);
- с номинальным напряжением не более 1 кВ.
Существуют и другие деления трансформаторов тока на виды, в том числе по способу материалов для изоляции, по числу ступеней трансформации и другим характеристикам.
Защита от перегрузки
Для создания безопасных и надежных условий работы всех элементов электрических сетей и устройств, предусматриваются разнообразные системы защиты от не стандартных ситуаций, к которым относятся и режимы перегрузок.
Защита от перегрузок бывает основана на использовании:
- Предохранителей и автоматических выключателей;
- Релейной защиты (максимальная токовая защита; защита по току отсечки; защита от токов нулевой последовательности; дифференциальная токовая защита.)
- Газовой защиты;
- Пожарной защиты;
- Системой использования специальных программ и автоматизации процессов.
Требования к условиям защиты различных типов трансформаторов регламентированы Правилами устройства электроустановок (ПУЭ) глава3.1 «Защита электрических сетей до 1 кВ» и глава 3.2 «Релейная защита».