Spkb-optics.ru

СПКБ Оптик
28 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Ослабление электрического поля внутри диэлектрика возникновение электрического тока

Электрическое поле заряда – это материальный объект, оно непрерывно в пространстве и способно действовать на другие электрические заряды. Электрическое поле неподвижных зарядов называется электростатическим. Электростатическое поле создается только электрическими зарядами, существует в пространстве, окружающем эти заряды и неразрывно с ними связано.

Если к электроскопу, не касаясь его оси, поднести на некотором расстоянии заряженную палочку, то стрелка все равно будет откланяться. Это и есть действие электрического поля.

Напряженность электрического поля

Заряды, находясь на некотором расстоянии один от другого, взаимодействуют. Это взаимодействие осуществляется посредством электрического поля. Наличие электрического поля можно обнаружить, помещая в различные точки пространства электрические заряды. Если на заряд в данной точке действует электрическая сила, то это означает, что в данной точке пространства существует электрическое поле. Графически силовые поля изображают силовыми линиями.

Силовая линия – это линия, касательная в каждой точке которой совпадает с вектором напряженности электрического поля в этой точке.

Напряженность электрического поля – это физическая величина, численно равная силе, действующей на единичный заряд, помещенный в данную точку поля. За направление вектора напряженности принимают направление силы, действующей на точечный положительный заряд.

Однородное электрическое поле – это такое поле, во всех точках которого напряженность имеет одно и то же абсолютное значение и направление. Приблизительно однородным является электрическое поле между двумя разноименно заряженными металлическими пластинами. Силовые линии такого поля являются прямыми одинаковой густоты.

Потенциал. Разность потенциалов. Кроме напряженности, важной характеристикой электрического поля является потенциал j. Потенциал j – это энергетическая характеристика электрического поля, тогда как напряженность E – это его силовая характеристика, потому что потенциал равен потенциальной энергии, которой обладает единичный заряд в данной точке поля, а напряженность равна силе, с которой поле действует на этот единичный заряд.

Диэлектрики в электрическом поле

Диэлектриками или изоляторами называются тела, которые не могут проводить через себя электрические заряды. Это объясняется отсутствием в них свободных зарядов.

Если одни конец диэлектрика внести в электрическое поле, то перераспределения зарядов не произойдет, т. к. в диэлектрике нет свободных носителей заряда. Оба конца диэлектрика будут нейтральны. Притяжение незаряженного тела из диэлектрика к заряженному телу объясняется тем, что в электрическом поле происходит поляризация диэлектрика, т. е. смещение в противоположные стороны разноименных связанных зарядов, входящих в состав атомов и молекул вещества.

Полярные и неполярные диэлектрики

К неполярным относятся диэлектрики, в атомах или молекулах которых центр отрицательно заряженного электронного облака совпадает с центром положительного атомного ядра. Например, инертные газы, кислород, водород, бензол.

Полярные диэлектрики состоят из молекул, у которых центры распределения положительных и отрицательных зарядов не совпадают. Например, спирты, вода. Их молекулы можно рассматривать как совокупность двух точечных зарядов, равных по модулю и противоположных по знаку, находящихся на некотором расстоянии друг от друга. Такую в целом нейтральную систему называют электрическим диполем.

Проводники в электрическом поле

Проводниками называются тела, способные пропускать через себя электрические заряды. Это свойство проводников объясняется наличием в них свободных носителей заряда. Примерами проводников могут быть металлы и растворы электролитов.

Если взять металлический проводник и один его конец поместить в электрическое поле, то на данном конце появится электрический заряд. Согласно закону сохранения электрического заряда, на другом конце проводника появится равный ему по модулю и противоположный по знаку заряд. Явление разделения разноименных зарядов в проводнике, помещенном в электрическое поле, называется электростатической индукцией.

При внесении в электрическое поле проводника свободные заряды в нем приходят в движение. Перераспределение зарядов вызывает изменение электрического поля. Движение зарядов прекращается только тогда, когда напряженность электрического поля внутри проводника становится равной нулю. Свободные заряды перестают перемещаться вдоль поверхности проводящего тела при достижении такого распределения, при котором вектор напряженности электрического поля в любой точке перпендикулярен поверхности тела. Электростатическое поле внутри проводника равно нулю, весь статический заряд проводника сосредоточен на его поверхности.

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Конспект урока «Проводники и диэлектрики в электростатическом поле»

Из курса физики средней школы вы знаете, что в металлах свободными носителями зарядов являются электроны. Это происходит потому, что электроны, находящиеся на внешних оболочках атомов, утрачивают связи со своими атомами и могут относительно свободно передвигаться по всему объёму металла.

Давайте посмотрим, что произойдёт, если поместить металлический проводник в однородное электрическое поле, которое создаётся двумя разноимённо заряженными пластинами. Мы уже с вами знаем, что вектор напряжённость этого поля направлен от положительно заряженной пластины к отрицательно заряженной. Под действием кулоновских сил свободные электроны наряду с непрекращающимся тепловым движением начнут упорядоченное движение в сторону положительно заряженной пластины (то есть возникнет электрический ток), создавая там избыточный отрицательный заряд. В то же время недостаток электронов на правой стороне проводника приведёт к возникновению на ней избыточного положительного заряда.

Явление, при котором на поверхности проводника, помещённого в электростатическое поле, появляются электрические заряды, называют электростатической индукцией или электризацией через влияние.

А электрические заряды, возникающие в результате электростатической индукции, называют индуцированными.

Конечно же перераспределившиеся заряды создадут собственное электрическое поле, линии напряжённости которого будут направлены в сторону, противоположную линиям напряжённости внешнего поля (то есть будут его компенсировать). За ничтожно малый промежуток времени (порядка 10 –13 секунды) заряды в проводнике перераспределяются так, что напряжённость результирующего поля внутри пластины становиться равной нулю, и электрический ток прекращается. Следовательно, электростатическое поле в проводнике существовать не может.

Теперь давайте выясним, как распределяются заряды в наэлектризованном проводнике. Для этого проведём такой опыт. Возьмём полый металлический шар и заряди́м его. Теперь маленьким шариком на изолирующей ручке будем касаться различных точек внешней поверхности заряженного металлического шара, а затем электрометра. По углу отклонения стрелки электрометра, можно убедиться, что на внешней поверхности полого шара заряд распределяется равномерно.

Если же коснуться шариком внутренней поверхности заряженного шара, а затем электрометра, то стрелка последнего никак себя не проявит. Это говорит нам о том, что на внутренней поверхности шара избыточного заряда нет. То есть действительно, заряды, сообщённые проводнику, располагаются только на его внешней поверхности.

Это ещё раз доказывает, что электростатическое поле внутри проводника отсутствует. Суммарный заряд любой внутренней области проводника равен нулю и не влияет на распределение зарядов на его поверхности и на напряжённость поля внутри проводника.

На этом свойстве проводников и основан принцип действия клетки Фарадея, используемой для электростатической защиты.

И ещё один важный факт, о котором мы с вами должны знать: возле поверхности проводника силовые линии электростатического поля всегда перпендикулярны поверхности.

Докажем это методом от противного. Для этого предположим, что у поверхности проводника силовые линии не перпендикулярны поверхности, то есть вектор напряжённости поля направлен под некоторым углом к ней. Разложим вектор напряжённости на две взаимно перпендикулярные составляющие: одна из них — перпендикулярно поверхности проводника, а вторая направлена по касательной к этой поверхности.

Как мы знаем, в проводнике имеются свободные заряды (для простоты, будем считать, что это положительные заряды). На эти заряды будет действовать электрическая сила со стороны составляющей и направлена она будет вдоль поверхности проводника. Под действием этой силы носители заряда тут же придут в движение и будут перемещаться туда, куда направлена касательная составляющая вектора напряжённости поля. Значит эти заряды будут создавать своё поле, направленное против , которое со временем будет увеличиваться. Это будет продолжаться до тех пор, пока вектор не исчезнет. И вектор напряжённости поля очень быстро повернётся и станет перпендикулярен поверхности проводника.

В 1729 году исследуя явление электризации через влияние английский физик Стефан Грей установил, что все вещества, известные на то время, можно разделить на два класса: способные переносить электрические заряды и этим свойством не обладающие. Соответствующие термины «проводник» и «изолятор» были введены ещё одним английским учёным Жаном Теофилом Дезагюлье.

Читать еще:  Розетка велосипеды кривой рог

В 1838 году Майкл Фарадей предложил называть изоляторы диэлектриками, так как в эти вещества способно проникать электростатическое поле.

Давайте посмотрим, что же происходит с диэлектриком, если его поместить в электростатическое поле. Для этого проведём такой опыт. Возьмём длинную деревянную линейку установим на подставке так, чтобы она могла свободно вращаться. Наэлектризуем стеклянную палочку и поднесём её к одному из концов линейки. Как видим, линейка начала поворачиваться в сторону палочки. Следовательно, незаряженный диэлектрик, коим является деревянная линейка, притягивается к заряженному телу. Объяснить это можно только при условии появления на его концах избыточных зарядов, противоположных по знаку.

Рассмотрим механизм перераспределения зарядов по поверхности диэлектрика. Вам уже известно, что все атомы и молекулы состоят из положительно заряженного ядра, вокруг которого с огромной скоростью вращаются отрицательно заряженные электроны. Например, в ядре атома водорода электрон совершает один оборот примерно за 10 –15 секунд. Значит, например, за 10 –9 секунд он совершит один миллион оборотов, и миллион раз побывает в двух любых диаметрально противоположных точках. Это даёт нам основание полагать, что центр распределения отрицательного заряда в атоме приходится на его ядро.

А теперь посмотрим на молекулу поваренной соли. Из химии вам должно быть известно, что в атоме натрия на внешней оболочке есть всего один валентный электрон, слабо связанный с ядром.

А у атома хлора валентных электронов 7. Таким образом, при образовании молекулы поваренной соли единственный свободный валентный электрон натрия захватывается хлором. В результате из двух нейтральных атомов образуются система из двух разноимённо заряженных ионов. Теперь положительный и отрицательный заряды не распределены симметрично по объёму молекулы: центр распределения положительного заряда приходиться на ион натрия, а отрицательного — на ион хлора.

На большом расстоянии такую молекулу можно рассматривать как электрический диполь, то есть систему двух равных по модулю и противоположных по знаку зарядов, расположенных на некотором расстоянии друг от друга.

В связи с этим все диэлектрики принято делить на два вида:

неполярные, состоящие из атомов и молекул, у которых центры распределения зарядов совпадают (это, например, парафин, бензол, инертные газы, кислород и так далее);

и полярные, состоящие из молекул, у которых центры распределения зарядов не совпадают (примерами служат спирт, вода, аммиак, ацетон);

У полярных диэлектриков в отсутствие внешнего электростатического поля молекулы-диполи, совершая тепловое движение, располагаются хаотически. Поэтому, результирующее электрическое поле, создаваемое диполями, практически равно нулю, так как в среднем равен нулю электрический заряд.

Когда мы помещаем диэлектрик во внешнее поле, то на каждый диполь начинают действовать две силы, равные по модулю, но противоположные по направлению. Под действием этих сил диполи стремятся повернуться так, чтобы их оси совпали с направлением напряжённости внешнего поля. При этом положительные заряды смещаются в направлении электрического поля, а отрицательные — противоположно этому направлению.

Такое смещение положительных и отрицательных связанных зарядов диэлектрика в противоположные стороны называется поляризацией, а сам диэлектрик в этом состоянии — поляризованным.

Упорядоченное расположение всех диполей вдоль силовых линий возможно только при температуре, близкой к абсолютному нулю. Во всех остальных случаях происходит лишь их частичная ориентация. Это означает, что в среднем число электрических диполей, ориентированных вдоль поля, больше, чем их число, ориентированных против поля. В результате в любой части диэлектрика суммарный электрический заряд всё также будет равен нулю. Но вот на поверхности диэлектрика появятся заряды: с одной стороны преимущественно положительные заряды диполей, с другой — отрицательные.

У неполярных диэлектриков молекулы со сферически симметричным распределением зарядов в отсутствие внешнего электрического поля не создают собственного поля. Под влиянием электростатического поля положительные и отрицательные заряды в пределах молекулы несколько смещаются один относительно другого, образуя диполь. Поэтому, как и в случае с полярными диэлектриками, в неполярных диэлектриках на одной поверхности появляется положительный поляризационный заряд, на другой — отрицательный

Поляризация диэлектрика несколько напоминает электризацию проводника через влияние. Однако между этими явлениями существует глубокое различие. Дело в том, что в проводниках электризация обусловлена наличием свободных зарядов. И если разделить в электрическом поле проводник, заряженный через влияние, то мы получим два противоположно заряженных проводника,

В диэлектрике же поляризационные заряды не перемещаются, поэтому их и называют связанными. Эти заряды нельзя отделить один от другого. И если поляризованный диэлектрик разрезать пополам во внешнем электрическом поле, то на одной стороне каждой половинки будет нескомпенсированный положительный заряд, а на другой — отрицательный.

Очевидно, что поляризационные заряды, появившиеся на границе ди­электрика с проводником вследствие его поляризации, создают собственное электростатическое поле, напряжённость которого направлена навстречу напряжённости внешнего поля и ослабляет её, но не компенсирует полностью.

Согласно принципу суперпозиции, модуль напряжённости результирующего электростатического поля внутри диэлектрика равен разности напряжённостей внешнего поля и поля, созданного поляризационными зарядами:

Для характеристики электрических свойств диэлектриков вводят физическую величину, называемую диэлектрической проницаемостью вещества.

Диэлектрическая проницаемость веществаэто скалярная физическая величина, которая показывает, во сколько раз модуль напряжённости электростатического поля внутри однородного диэлектрика меньше модуля напряжённости поля в вакууме:

Различные диэлектрики поляризуются внешним полем по-разному и имеют разную диэлектрическую проницаемость. В таблице приведены диэлектрические проницаемости различных веществ относительно вакуума, диэлектрическая проницаемость которого принанимается за единицу.

Обратите внимание на диэлектрическую проницаемость воздуха. Так как её значение мало отличается от диэлектрической проницаемости вакуума, то при решении большинства задач мы будем считать её равной единице.

Полярные и неполярные диэлектрики

Для ответа на поставленный вопрос рассмотрим состав вещества. К 10 классу уже известно, что атомы любого вещества состоят из положительно заряженных ядер и отрицательно заряженных электронов. Заряд ядер равен заряду электронов, поэтому в целом вещество электрически нейтрально.

Однако, в пространстве электрический заряд может быть распределен по-разному.

Например, ядра и электроны могут быть расположены симметрично. В этом случае центр распределения положительного и отрицательного заряда совпадает. Скажем, в молекуле углекислого газа два атома кислорода располагаются симметрично по разные стороны от атома углерода.

Рис. 2. Пространственная структура молекулы углекислого газа.

У других веществ распределение положительных и отрицательных зарядов несимметрично. К таким веществам, например, относится обычная вода. В молекуле воды имеется один двухвалентный атом кислорода, и два атома водорода, образующие равнобедренный треугольник, в котором угол при вершине (атоме кислорода) составляет около 105⁰.

Рис. 3. Пространственная структура молекулы воды.

Получается, что в вершине треугольника отрицательные электроны расположены плотнее, чем в его основании. А положительная вершина имеет более концентрированный двойной заряд, по сравнению с более распределенным положительным зарядом основания. Все это приводит к тому, что центр отрицательного заряда в молекуле воды расположен ближе к вершине треугольника, и не совпадает с центром положительного заряда.

Таким образом, существует два вида диэлектриков – полярные и неполярные, у которых распределение заряда несимметрично и симметрично соответственно.

Проводники и диэлектрики в электрическом поле

1. Проводники в электрическом поле

Напомним, что заряженные частицы, которые могут перемещаться в веществе, называют свободными зарядами.

Если поместить проводник в электрическое поле, то находящиеся в нем свободные заряды придут в движение и в проводнике возникнет направленное движение зарядов, то есть электрический ток. Проводники потому так и называются, что они проводят электрический ток.

Лучшие проводники – металлы. Свободными зарядами в металлах являются свободные электроны. Поскольку электроны имеют отрицательный электрический заряд, действующая на них со стороны электрического поля сила направлена противоположно напряженности электрического поля.

За направление электрического тока принимают направление движения положительных зарядов. Поэтому в металлах направление электрического тока противоположно направлению движения свободных зарядов – электронов (рис. 52.1).

Внесем, например, металлический шар в однородное электрическое поле (рис. 52.2).

? 1. В каком направлении будут двигаться при этом свободные электроны? Каким будет направление кратковременного электрического тока?

В результате на одной стороне шара появится избыток электронов, то есть возникнет отрицательный заряд, а на другой его стороне – недостаток электронов, то есть возникнет положительный заряд (рис. 52.3).

Читать еще:  Как соединить две евро розетки

? 2. Объясните, почему поле, созданное этими зарядами внутри проводника, направлено противоположно внешнему полю.

Свободные электроны будут двигаться до тех пор, пока на них будет действовать сила со стороны электрического поля.

? 3. Объясните, почему равновесие зарядов в проводнике возможно только при условии, что напряженность электрического поля внутри проводника равна нулю (см. рис. 52.3).

Перераспределение зарядов в проводнике, в результате которого напряженность электрического поля внутри проводника обращается в нуль, называют электростатической индукцией.

При равновесии зарядов напряженность электрического поля внутри проводника равна нулю:

= 0.

Вследствие принципа суперпозиции полей перераспределение зарядов в проводнике изменяет и поле вне проводника. В результате линии напряженности поля вне проводника деформируются.

? 4. Объясните, почему вблизи поверхности проводника линии напряженности электрического поля перпендикулярны поверхности проводника (см. рис. 52.3).
Подсказка. Когда заряды в проводнике находятся в равновесии, на них не действует сила, направленная вдоль поверхности проводника (иначе заряды двигались бы вдоль поверхности проводника).

При равновесии электрических зарядов в проводнике они расположены всегда на поверхности проводника. Причем это справедливо как для незаряженного, так и для заряженного проводника.

Электростатическая защита

При равновесии зарядов напряженность электрического поля равна нулю не только в сплошном изолированном проводнике, но и внутри полого проводника. По этой причине, например, напряженность поля внутри однородно заряженной сферы равна нулю (если внутри сферы нет заряженных тел).

Это свойство проводников в электрическом поле используют для сования электростатической защиты: например, чувствительные к электрическому полю приборы заключат в металлические ящики. Причем я этого не обязательно даже, чтобы стенки ящиков были сплошными: достаточно использовать металлическую сетку, которую называют иногда «сеткой Фарадея» (рис. 52.4).

Электростатическую защиту используют также, чтобы защитить людей, работающих в сильном электрическом поле: в таком случае металлической сеткой окружают пространство, в котором работают люди.

2. Диэлектрики в электрическом поле

Как вы уже знаете, в диэлектриках нет свободных зарядов. Однако это не значит, что в них вообще нет заряженных частиц: ведь в атомах и молекулах диэлектриков, как и любых других веществ, есть положительно заряженные ядра и отрицательно заряженные электроны.

В диэлектриках все электроны сильно связаны со своими атомами, поэтому их называют «связанными электронами». Но под действием внешнего электрического поля молекулы диэлектриков поворачиваются или изменяют форму (деформируются).

Рассмотрим подробнее, как это происходит в диэлектриках разного вида.

Полярные диэлектрики. В молекулах некоторых веществ центры распределения положительных и отрицательных зарядов не совпадают.

Например, в молекуле воды, состоящей из одного атома кислорода и двух атомов водорода, электроны атомов водорода большую часть времени проводят вблизи атома кислорода, в результате чего возле атома кислорода образуется отрицательный полюс, а возле атомов водорода – положительный полюс.

Такие диэлектрики называют полярными, потому что у молекул этих диэлектриков есть два полюса зарядов – положительный и отрицательный (рис. 52.5, а).

Под действием электрического поля молекулы полярных диэлектриков поворачиваются (рис. 52.5, б) и ориентируются вдоль линий напряженности поля (рис. 52.5, в).

Неполярные диэлектрики. Диэлектрики, в молекулах которых центры распределения положительных и отрицательных зарядов совпадают, называют неполярными (рис. 52.6, а). К ним относятся, например, многие газы.

Под действием внешнего электрического поля положительные и отрицательные заряды в молекуле «растаскиваются» в противоположные стороны. В результате центры распределения положительных и отрицательных зарядов перестают совпадать (рис. 52.6, б).

Деформированная молекула с точи зрения распределения зарядов становится подобной полярной молекуле, ориентированной вдоль линий напряженности поля.

Поляризация диэлектриков

Итак, под действием внешнего электрического поля молекулы как полярных, так и неполярных диэлектриков выстраиваются по направлению напряженности внешнего электрического поля.

Это явление называют поляризацией диэлектрика.
В результате поляризации диэлектрика на его поверхности появляются заряды. Как мы уже говорили, эти заряды называют связанными, потому что они обусловлены смещением заряда только внутри молекул (а не во всем образце, как это происходит при движении свободных зарядов в проводнике).

На рисунке 52.7 схематически показано, как в результате поляризации диэлектрика на его поверхности появляются связанные заряды.

Мы видим, что положительные и отрицательные заряды, образовавшиеся вследствие поляризации, внутри диэлектрика компенсируют друг друга. А на поверхности диэлектрика такой компенсации нет: поэтому и возникают поверхностные заряды.

Рассмотрим теперь, как изменяется напряженность электрического поля при внесении в него диэлектрика вследствие появления связанных зарядов.

Заметим, что напряженность поля поляр, созданного связанными зарядами, направлена противоположно напряженности внеш внешнего электрического поля (см. рис. 52.7).

Поэтому согласно принципу суперпозиции поле, созданное связанными зарядами, уменьшает напряженность поля внутри диэлектрика (однако не до нуля, как в случае проводника).

вследствие поляризации диэлектрика напряженность электрического поля внутри диэлектрика уменьшается.

Благодаря поляризации незаряженные диэлектрики притягиваются к заряженному телу независимо от знака его заряда.

Дело в том, что электрическое поле вокруг заряженных тел неоднородно: чем ближе к заряженному телу, тем больше напряженность поля.

Когда незаряженный диэлектрик вносят в электрическое поле, на его поверхности появляются связанные заряды противоположных знаков. В результате на разные части диэлектрика со стороны поля действуют противоположно направленные силы (рис. 52.8). И в неоднородном поле «побеждает» та сила, которая действует на заряды, находящиеся в более сильном поле, то есть находящиеся ближе к заряженному телу. Поэтому незаряженное тело притягивается к заряженному.

Теперь становится понятным, почему электрическое отталкивание заметили только через две тысячи лет после того, как обнаружили электрическое притяжение.

Ведь чтобы тела притягивались, достаточно, чтобы заряжено было только одно из них, причем зарядом любого знака. А отталкиваются тела лишь тогда, когда они оба заряжены, причем обязательно одноименно.

? 5. В описанном в предыдущем параграфе опыте по визуализации линий напряженности было использовано то, что состоящие из диэлектрика продолговатые тела ориентируются в электрическом поле вдоль линий напряженности. Объясните, почему это происходит.

Диэлектрическая проницаемость

Величину, которая показывает, во сколько раз уменьшатся напряженность внешнего электрического поля внутри однородного диэлектрика, называют его диэлектрической проницаемостью и обозначают ε.

Значения диэлектрической проницаемости для разных веществ могут очень сильно различаться.

Например, для воздуха ε = 1,0006, то есть очень мало отличается от единицы. Очень близка к единице и диэлектрическая проницаемость других газов. Обусловлено это главным образом малой концентрацией молекул в газах.

Значение диэлектрической проницаемости большинства жидкостей и твердых тел – от нескольких единиц до нескольких десятков. Сравнительно велика диэлектрическая проницаемость воды: ε = 81.

Но есть вещества (сегнетоэлектрики), у которых диэлектрическая проницаемость достигает десятков и сотен тысяч.

? 6. Металлическому шару радиусом 10 см сообщили положительный заряд 20 нКл и после этого поместили в большой сосуд с водой.
а) Сделайте в тетради схематический рисунок, на котором изобразите заряд шара и связанные заряды, возникшие вследствие поляризации воды.
б) Чему будет равна напряженность электрического поля на расстоянии от центра шара, равном 5 см? 15 см? 25 см?

Уменьшение силы взаимодействия заряженных тел, погруженных в диэлектрик. Поскольку взаимодействие заряженных тел осуществляется посредством электрического поля, а поле в диэлектрике уменьшается в ε раз, то в ε раз уменьшается и сила взаимодействия заряженных тел, полностью погруженных в однородный диэлектрик. Например, для очечных зарядов, находящихся в однородном диэлектрике с диэлектрической проницаемостью ε, закон Кулона принимает вид

? 7. Чему равна диэлектрическая проницаемость жидкости, если погруженные в нее небольшие шарики с зарядом 30 нКл каждый взаимодействуют с силой 7,8 мкН? Расстояние между шариками равно 20 см.

Увеличение силы взаимодействия заряженных тел, между которыми помещен диэлектрик. Если расположить диэлектрик между заряженными телами, то силы, действующие на каждое заряженное тело, увеличатся.

? 8. Объясните, почему это происходит.
Подсказка. Воспользуйтесь рисунком 52.9.

Дополнительные вопросы и задания

9. Два одинаковых заряженных шарика подвешены на нитях равной длины в одной точке, При этом нити отклонены от вертикали на некоторый угол. Когда всю эту систему погрузили в жидкий диэлектрик, угол отклонения нитей не изменился.
а) Изобразите на чертеже все силы, действующие на один из шариков до погружения в диэлектрик и после этого.
б) Во сколько раз плотность шариков больше плотности диэлектрика, если его диэлектрическая проницаемость равна 3?

Читать еще:  Nissan qashqai не работает розетка

10. Как изменится сила взаимодействия двух заряженных тел, если поместить между ними незаряженный проводник, который не касается этих тел?

Диэлектрическая проницаемость вещества

Для характеристики электрических свойств диэлектриков введена особая величина, которую называют диэлектрической проницаемостью. Это физическая постоянная, которая показывает, во сколько раз модуль напряженности электрического поля внутри диэлектрика Евн меньше модуля напряженности Е в вакууме:

Диэлектрическая проницаемость определена для всех диэлектриков и занесена в таблицы. Для дистиллированной воды ε = 81, а для керосина ε = 2.

Электрофорус

Если поведение диэлектриков в электрическом поле долгое время оставалось неизученным, благодаря металлам Вольта узнал больше об электричестве и позже смог изобрести знаменитый гальванический источник питания. Речь идёт об электрофорусе. Прибор, не слишком известный в России, будоражил умы западных учёных, сегодня служит непременным элементом развлечения студентов. Прибор сейчас покажет (и докажет), как ведут себя проводники в электрическом поле.

Электрофорус – статический генератор с ручным взводом, металлическая печать солидного размера, лучший способ демонстрации статического электричества. Представим, что на круглую подложку из древесины наклеен тончайший лист резины. Вольта говорил, что толстый кусок проявляет худшие свойства. Но не сумел объяснить причину. В давнее время люди не знали, что диэлектрики обладают способностью запасать энергию электрического поля во внутренней структуре. Принцип теперь используется в большинстве конденсаторов.

Тонкий кусок меньше энергии поля поглощал и больше оставлял на поверхности в виде заряда. Трением быстрее доводился до кондиции. Указанный факт отметил Вольта. Требовалось резину натереть. Вольта делал это добрым куском шерсти в течение ряда минут.

Заключительным штрихом конструкции служил тонкий металлический диск, полностью покрывавший резиновый. Толщина выбиралась меньшей, чтобы свойства проводника в электрическом поле проявились ярче. Что происходило в электрофорусе:

  1. Оператор натирал резину до образования плотного статического заряда электронов.
  2. Убирал шерсть и опускал сверху металлический диск.
  3. Проводник электризовался влиянием. Из-за шероховатости поверхности точек соприкосновения оказывалось мало, низ диска заряжался положительно. Это вызвано оттоком электронов, вытолкнутых полем наверх (см. ниже).
  4. Потом оператор кратковременно заземлял верхнюю часть диска лёгким касанием и разрывал поверхности.
  5. На нижней стороне металлической «печати» оставался свободный статический положительный заряд.

Опыт повторялся десятки раз. Очевидцы заявляют о сотнях, а Вольта говорил, что «сложно избавить резину от флюида» и предлагал делать это солнечными лучами, пламенем свечи и прочими сильными средствами. Чтобы понять, как работает электрофорус, нужно иметь представление о поведении проводника в электрическом поле.

Постоянный ток

Господа, доброе всем время суток! Сегодня коротенечко рассмотрим затронутый в статье про силу тока вопрос, почему же лампочка вспыхивает мгновенно при столь малой скорости направленного движения заряженных частиц. Речь пойдет, как уже многие догадались, об электрическом поле проводника с током. Мы попытаемся разобраться как это поле выглядит внутри и снаружи проводника и рассмотрим механизм его образования. Итак, погнали!

На самом деле мы сейчас рассмотрим довольно нетривиальные вещи. Дело в том, что когда речь заходит про электрическое поле часто возникает непонимание физики процессов и бесконечные споры о том, что же это такое, особенно если имеют место быть движущиеся заряды. В ход идет мощная артиллерия из целого каскада уравнений Максвелла и прочих дивергенций, однако и это не всегда приводит к однозначному пониманию происходящего.

Скажу честно, сначала я вообще не хотел писать статью на данную тему и затрагивать рассмотрение этого вопроса, тем более, что в инженерной практике он не имеет большого значения. Однако, поразмыслив, все-таки я решил кратко рассмотреть его для полноты картины, разумеется, на максимально простом уровне.

Прежде всего зададимся вопросом – а что же нужно для того, чтобы имел место электрический ток? По сути мы уже ответили на этот вопрос в статье про силу тока. Нам нужно наличие свободных заряженных частиц – электронов или ионов, а также некоторой силы, вызывающей это упорядоченное движение. Эта сила – электрическое поле. Да, именно благодаря электрическому полю и возникает электрический ток.

Что именно такое электрическое поле, как оно создается, чем характеризуется и какие законы описывают поведение зарядов в нем мы рассмотрели вот в этой статье. На всякий случай еще раз напомню, что электрическое поле создается электрическими зарядами.

Итак, поле создается зарядами. Ок. Как же в итоге возникает ток в проводнике? Рассмотрим цепь, состоящую из проводника с нагрузкой и батарейки. Батарейка создает некоторое напряжение. На минусовой клемме батареи, очевидно, имеет место избыток электронов. Это минус и по определению там электронов больше, чем на плюсе. Эти заряды создают вокруг себя поле. Но что делать, если длина проводника несколько километров? Ведь поле затухает пропорционально квадрату расстояния, как мы помним из закона Кулона. При замыкании цепи эти электроны с минусовой клеммы начинают действовать на близлежащие электроны в проводнике, толкать их в стороны. Часть электронов будет двигаться вдоль оси проводника. Часть электронов достигнет поверхности проводника и скопится на ней. Образуется типа поверхностного заряда. Этот поверхностный заряд будет создавать поле в следующей участке проводника. Ну и так далее. Распространение поверхностного заряда иллюстрирует рисунок 1.

Рисунок 1 – Распространение поверхностного заряда

Дело в том, что распространяться этот самый заряд, ну, то есть, по сути поле, будет со скоростью света, которая, как известно, равна примерно 300 000 км/с. Очень быстро. Поэтому и загорится лампочка почти мгновенно. Это поле называется стационарным. Оно неизменно в течении времени. Да, заряды движутся. Но на их место приходят новые, точно такие же по величине.

Господа, как мы все помним из вот этой вот статьи для визуализации электрического поля и его наглядного представления принято использовать силовые линии. Как же выглядят силовые линии внутри проводника с током и снаружи от него? Ответ таков: внутри проводника с током силовые линии параллельны оси проводника, а снаружи — идут под углом к нему. Это показано на рисунке 2.

Рисунок 2 – Силовые линии проводника с током

Почему это так? Разберемся сначала с ситуацией вне проводника. Как мы уже выяснили на проводнике с током, на его поверхности, содержится поверхностный заряд. Причем (господа, внимание!), этот заряд плавно уменьшается по длине проводника. Ясно, что рядом с минусом будет намного больший избыток электронов, чем рядом с плюсом, на котором, наоборот, их недостаток. То есть есть продольная составляющая вектора напряженности. Кроме того, очевидно, есть составляющая вектора напряженности, перпендикулярная поверхности проводника. Поверхностный заряд ведь светит своей напряженностью вокруг себя. Итого, по правилу сложения векторов получаем, что вне проводника поле направлено под углом к нему. Господа, для тех, кто вдруг забыл, напоминаю правило сложения векторов. Оно показано на рисунке 3.

Рисунок 3 – Правило сложения векторов

Внутри же проводника создаются такие условия, что силовые линии напряженности направлены вдоль его оси. Почему это так? Ответ может быть такой. Очевидно, что в проводнике с током сила тока одинакова по всей длине проводника. Кто не верит — амперметр в лапки и вперед измерять. Это значит, что по всей длине проводника скорость зарядов одна и та же. Господа, это неопровержимо выведено в нашей самой первой статье про силу тока. Если скорость одна и та же, то одинакова и сила, с которой поле действует на заряды. А раз одинакова сила, то будет одна и та же напряженность поля во всех сечениях проводника. Сила же зависит напрямую от напряженности! Причем одинакова сила будет при любой длине проводника. Это свидетельствует о том, что линии напряженности в проводнике параллельны оси проводника.

Уфф! Господа, чуть передохните и прочитайте предыдущий абзац еще разок. Знаю, там одно, цепляется за другое, потом другое за третье и в конце уже не помнишь, с чего начиналось. В таком случае лучше отдохнуть и пере

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector